Zariski tangent space

In algebraic geometry, the Zariski tangent space is a construction that defines a tangent space at a point P on an algebraic variety V (and more generally). It does not use differential calculus, being based directly on abstract algebra, and in the most concrete cases just the theory of a system of linear equations.

For example, suppose given a plane curve C defined by a polynomial equation

and take P to be the origin (0,0). Erasing terms of higher order than 1 would produce a 'linearised' equation reading

We have two cases: L may be 0, or it may be the equation of a line. In the first case the (Zariski) tangent space to C at (0,0) is the whole plane, considered as a two-dimensional affine space. In the second case, the tangent space is that line, considered as affine space. (The question of the origin comes up, when we take P as a general point on C; it is better to say 'affine space' and then note that P is a natural origin, rather than insist directly that it is a vector space.)

It is easy to see that over the real field we can obtain L in terms of the first partial derivatives of F. When those both are 0 at P, we have a singular point (double point, cusp or something more complicated). The general definition is that singular points of C are the cases when the tangent space has dimension 2.

(One often defines the tangent and cotangent spaces for a manifold in the analogous manner.)

If V is a subvariety of an n-dimensional vector space, defined by an ideal I, then R = Fn / I, where Fn is the ring of smooth/analytic/holomorphic functions on this vector space. The Zariski tangent space at x is

where mn is the maximal ideal consisting of those functions in Fn vanishing at x.

If R is a Noetherian local ring, the dimension of the tangent space is at least the dimension of R:

R is called regular if equality holds. In a more geometric parlance, when R is the local ring of a variety V at a point v, one also says that v is a regular point. Otherwise it is called a singular point.

The tangent space has an interpretation in terms of K[t]/(t2), the dual numbers for K; in the parlance of schemes, morphisms from Spec K[t]/(t2) to a scheme X over K correspond to a choice of a rational point x ∈ X(k) and an element of the tangent space at x. Therefore, one also talks about tangent vectors. See also: tangent space to a functor.

Zariski, Oscar (1947). . Trans. Amer. Math. Soc. 62: 1–52. doi:. MR . Zbl .