Transistor–transistor logic

Standard TTL NAND with a "totem-pole" output stage, one of four in 7400

TTL is particularly well suited to bipolar integrated circuits because additional inputs to a gate merely required additional emitters on a shared base region of the input transistor. If individually packaged transistors were used, the cost of all the transistors would discourage one from using such an input structure. But in an integrated circuit, the additional emitters for extra gate inputs add only a small area.

Due to the output structure of TTL devices, the output impedance is asymmetrical between the high and low state, making them unsuitable for driving transmission lines. This drawback is usually overcome by buffering the outputs with special line-driver devices where signals need to be sent through cables. ECL, by virtue of its symmetric low-impedance output structure, does not have this drawback.

The TTL "totem-pole" output structure often has a momentary overlap when both the upper and lower transistors are conducting, resulting in a substantial pulse of current drawn from the power supply. These pulses can couple in unexpected ways between multiple integrated circuit packages, resulting in reduced noise margin and lower performance. TTL systems usually have a decoupling capacitor for every one or two IC packages, so that a current pulse from one TTL chip does not momentarily reduce the supply voltage to another.

Most manufacturers offer commercial and extended temperature ranges: for example Texas Instruments 7400 series parts are rated from 0 to 70 °C, and 5400 series devices over the military-specification temperature range of −55 to +125 °C.

Special quality levels and high-reliability parts are available for military and aerospace applications.

Radiation-hardened devices (for example from the SNJ54 series) are offered for space applications.

A TTL gate may operate inadvertently as an analog amplifier if the input is connected to a slowly changing input signal that traverses the unspecified region from 0.8 V to 2 V. The output can be erratic when the input is in this range. A slowly changing input like this can also cause excess power dissipation in the output circuit. If such an analog input must be used, there are specialized TTL parts with Schmitt trigger inputs available that will reliably convert the analog input to a digital value, effectively operating as a one bit A to D converter.