# Linearly ordered group

Group with translationally invariant total order; i.e. if a ≤ b, then ca ≤ cb

In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group G equipped with a total order "≤" that is translation-invariant. This may have different meanings. We say that (G, ≤) is a:

A group G is said to be left-orderable (or right-orderable, or bi-orderable) if there exists a left- (or right-, or bi-) invariant order on G. A simple necessary condition for a group to be left-orderable is to have no elements of finite order; however this is not a sufficient condition. It is equivalent for a group to be left- or right-orderable; however there exist left-orderable groups which are not bi-orderable.

Any left- or right-orderable group is torsion-free, that is it contains no elements of finite order besides the identity. Conversely, F. W. Levi showed that a torsion-free abelian group is bi-orderable;[2] this is still true for nilpotent groups[3] but there exist torsion-free, finitely presented groups which are not left-orderable.

Free groups are left-orderable. More generally this is also the case for right-angled Artin groups.[4] Braid groups are also left-orderable.[5]