Theory of everything

An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.

While the strong and electroweak forces coexist under the Standard Model of particle physics, they remain distinct. Thus, the pursuit of a theory of everything remained unsuccessful: neither a unification of the strong and electroweak forces – which Laplace would have called 'contact forces' – nor a unification of these forces with gravitation had been achieved.

The final step in the graph requires resolving the separation between quantum mechanics and gravitation, often equated with general relativity. Numerous researchers concentrate their efforts on this specific step; nevertheless, no accepted theory of quantum gravity, and thus no accepted theory of everything, has emerged with observational evidence. It is usually assumed that the theory of everything will also solve the remaining problems of grand unified theories.

This model leads to an interpretation of electric and color charge as topological quantities (electric as number and chirality of twists carried on the individual ribbons and colour as variants of such twisting for fixed electric charge).

Causal dynamical triangulation does not assume any pre-existing arena (dimensional space), but rather attempts to show how the spacetime fabric itself evolves.

In parallel to the intense search for a theory of everything, various scholars have seriously debated the possibility of its discovery.

A number of scholars claim that Gödel's incompleteness theorem suggests that any attempt to construct a theory of everything is bound to fail. Gödel's theorem, informally stated, asserts that any formal theory sufficient to express elementary arithmetical facts and strong enough for them to be proved is either inconsistent (both a statement and its denial can be derived from its axioms) or incomplete, in the sense that there is a true statement that can't be derived in the formal theory.