String (computer science)

Representations of strings depend heavily on the choice of character repertoire and the method of character encoding. Older string implementations were designed to work with repertoire and encoding defined by ASCII, or more recent extensions like the ISO 8859 series. Modern implementations often use the extensive repertoire defined by Unicode along with a variety of complex encodings such as UTF-8 and UTF-16.

The term byte string usually indicates a general-purpose string of bytes, rather than strings of only (readable) characters, strings of bits, or such. Byte strings often imply that bytes can take any value and any data can be stored as-is, meaning that there should be no value interpreted as a termination value.

In the latter case, the length-prefix field itself doesn't have fixed length, therefore the actual string data needs to be moved when the string grows such that the length field needs to be increased.

Here is a Pascal string stored in a 10-byte buffer, along with its ASCII / UTF-8 representation:

Many languages, including object-oriented ones, implement strings as records with an internal structure like:

Both character termination and length codes limit strings: For example, C character arrays that contain null (NUL) characters cannot be handled directly by C string library functions: Strings using a length code are limited to the maximum value of the length code.

While these representations are common, others are possible. Using ropes makes certain string operations, such as insertions, deletions, and concatenations more efficient.

Sometimes, strings need to be embedded inside a text file that is both human-readable and intended for consumption by a machine. This is needed in, for example, source code of programming languages, or in configuration files. In this case, the NUL character doesn't work well as a terminator since it is normally invisible (non-printable) and is difficult to input via a keyboard. Storing the string length would also be inconvenient as manual computation and tracking of the length is tedious and error-prone.

Character strings are such a useful datatype that several languages have been designed in order to make string processing applications easy to write. Examples include the following languages:

Many Unix utilities perform simple string manipulations and can be used to easily program some powerful string processing algorithms. Files and finite streams may be viewed as strings.

Some languages such as Perl and Ruby support string interpolation, which permits arbitrary expressions to be evaluated and included in string literals.

See Shortlex for an alternative string ordering that preserves well-foundedness.

A number of additional operations on strings commonly occur in the formal theory. These are given in the article on string operations.

Strings admit the following interpretation as nodes on a graph, where k is the number of symbols in Σ: