# Generalized Stokes theorem

In vector calculus and differential geometry the **generalized Stokes theorem** (sometimes with apostrophe as **Stokes' theorem** or **Stokes's theorem**), also called the **Stokes–Cartan theorem**,^{[1]} is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. It is a generalization of Isaac Newton's fundamental theorem of calculus that relates two-dimensional line integrals to three-dimensional surface integrals.^{[2]}

Stokes' theorem says that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative dω over the whole of Ω, i.e.,

Stokes' theorem was formulated in its modern form by Élie Cartan in 1945,^{[3]} following earlier work on the generalization of the theorems of vector calculus by Vito Volterra, Édouard Goursat, and Henri Poincaré.^{[4]}^{[5]}

This modern form of Stokes' theorem is a vast generalization of a classical result that Lord Kelvin communicated to George Stokes in a letter dated July 2, 1850.^{[6]}^{[7]}^{[8]} Stokes set the theorem as a question on the 1854 Smith's Prize exam, which led to the result bearing his name. It was first published by Hermann Hankel in 1861.^{[8]}^{[9]} This classical Kelvin–Stokes theorem relates the surface integral of the curl of a vector field **F** over a surface (that is, the flux of curl **F**) in Euclidean three-space to the line integral of the vector field over its boundary (also known as the loop integral).

Let *γ*: [*a*, *b*] → **R**^{2} be a piecewise smooth Jordan plane curve. The Jordan curve theorem implies that γ divides **R**^{2} into two components, a compact one and another that is non-compact. Let D denote the compact part that is bounded by γ and suppose *ψ*: *D* → **R**^{3} is smooth, with *S* := *ψ*(*D*). If Γ is the space curve defined by Γ(*t*) = *ψ*(*γ*(*t*))^{[note 1]} and **F** is a smooth vector field on **R**^{3}, then:^{[10]}^{[11]}^{[12]}

This classical statement, is a special case of the general formulation stated above after making an identification of vector field with a 1-form and its curl with a two form through

Other classical generalisations of the fundamental theorem of calculus like the divergence theorem, and Green's theorem are special cases of the general formulation stated above after making a standard identification of vector fields with differential forms (different for each of the classical theorems).

The fundamental theorem of calculus states that the integral of a function f over the interval [*a*, *b*] can be calculated by finding an antiderivative F of f:

Stokes' theorem is a vast generalization of this theorem in the following sense.

Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in **R**^{k} to M. The group *C*_{k}(*M*, **Z**) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex. The corresponding homology (resp. cohomology) group is isomorphic to the usual singular homology group *H*_{k}(*M*, **Z**) (resp. the singular cohomology group *H*^{k}(*M*, **Z**)), defined using continuous rather than smooth simplices in M.

On the other hand, the differential forms, with exterior derivative, d, as the connecting map, form a cochain complex, which defines the de Rham cohomology groups *H*^{k}_{dR}(*M*, **R**).

Differential k-forms can be integrated over a k-simplex in a natural way, by pulling back to **R**^{k}. Extending by linearity allows one to integrate over chains. This gives a linear map from the space of k-forms to the kth group of singular cochains, *C ^{k}*(

*M*,

**Z**), the linear functionals on

*C*(

_{k}*M*,

**Z**). In other words, a k-form ω defines a functional

Stokes' theorem on smooth manifolds can be derived from Stokes' theorem for chains in smooth manifolds, and vice versa.^{[13]} Formally stated, the latter reads:^{[14]}

**Theorem** (*Stokes' theorem for chains*) — If c is a smooth k-chain in a smooth manifold M, and ω is a smooth (*k* − 1)-form on M, then

To simplify these topological arguments, it is worthwhile to examine the underlying principle by considering an example for *d* = 2 dimensions. The essential idea can be understood by the diagram on the left, which shows that, in an oriented tiling of a manifold, the interior paths are traversed in opposite directions; their contributions to the path integral thus cancel each other pairwise. As a consequence, only the contribution from the boundary remains. It thus suffices to prove Stokes' theorem for sufficiently fine tilings (or, equivalently, simplices), which usually is not difficult.

The formulation above, in which Ω is a smooth manifold with boundary, does not suffice in many applications. For example, if the domain of integration is defined as the plane region between two x-coordinates and the graphs of two functions, it will often happen that the domain has corners. In such a case, the corner points mean that Ω is not a smooth manifold with boundary, and so the statement of Stokes' theorem given above does not apply. Nevertheless, it is possible to check that the conclusion of Stokes' theorem is still true. This is because Ω and its boundary are well-behaved away from a small set of points (a measure zero set).

The study of measure-theoretic properties of rough sets leads to geometric measure theory. Even more general versions of Stokes' theorem have been proved by Federer and by Harrison.^{[16]}

The general form of the Stokes theorem using differential forms is more powerful and easier to use than the special cases. The traditional versions can be formulated using Cartesian coordinates without the machinery of differential geometry, and thus are more accessible. Further, they are older and their names are more familiar as a result. The traditional forms are often considered more convenient by practicing scientists and engineers but the non-naturalness of the traditional formulation becomes apparent when using other coordinate systems, even familiar ones like spherical or cylindrical coordinates. There is potential for confusion in the way names are applied, and the use of dual formulations.

This is a (dualized) (1 + 1)-dimensional case, for a 1-form (dualized because it is a statement about vector fields). This special case is often just referred to as *Stokes' theorem* in many introductory university vector calculus courses and is used in physics and engineering. It is also sometimes known as the **curl** theorem.

The classical Kelvin–Stokes theorem relates the surface integral of the curl of a vector field over a surface Σ in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with *n* = 2) once we identify a vector field with a 1-form using the metric on Euclidean 3-space. The curve of the line integral, ∂Σ, must have positive orientation, meaning that ∂Σ points counterclockwise when the surface normal, **n**, points toward the viewer.

One consequence of the Kelvin–Stokes theorem is that the field lines of a vector field with zero curl cannot be closed contours. The formula can be rewritten as:

**Theorem** — Suppose **F** = (*P*(*x*,*y*,*z*), *Q*(*x*,*y*,*z*), *R*(*x*,*y*,*z*)) is defined in a region with smooth surface Σ and has continuous first-order partial derivatives. Then

where P, Q, and R are the components of **F**, and ∂Σ is the boundary of the region Σ.

Green's theorem is immediately recognizable as the third integrand of both sides in the integral in terms of P, Q, and R cited above.

Two of the four Maxwell equations involve curls of 3-D vector fields, and their differential and integral forms are related by the Kelvin–Stokes theorem. Caution must be taken to avoid cases with moving boundaries: the partial time derivatives are intended to exclude such cases. If moving boundaries are included, interchange of integration and differentiation introduces terms related to boundary motion not included in the results below (see Differentiation under the integral sign):

The above listed subset of Maxwell's equations are valid for electromagnetic fields expressed in SI units. In other systems of units, such as CGS or Gaussian units, the scaling factors for the terms differ. For example, in Gaussian units, Faraday's law of induction and Ampère's law take the forms:^{[17]}^{[18]}

is a special case if we identify a vector field with the (*n* − 1)-form obtained by contracting the vector field with the Euclidean volume form. An application of this is the case **F** = *f***c** where **c** is an arbitrary constant vector. Working out the divergence of the product gives