Space (mathematics)

Topological notions such as continuity have natural definitions in every Euclidean space. However, topology does not distinguish straight lines from curved lines, and the relation between Euclidean and topological spaces is thus "forgetful". Relations of this kind are treated in more detail in the Section "Types of spaces".

Fig. 2: Homothety transforms a geometric figure into a similar one by scaling.

In ancient Greek mathematics, "space" was a geometric abstraction of the three-dimensional reality observed in everyday life. About 300 BC, Euclid gave axioms for the properties of space. Euclid built all of mathematics on these geometric foundations, going so far as to define numbers by comparing the lengths of line segments to the length of a chosen reference segment.

Distances and angles cannot appear in theorems of projective geometry, since these notions are neither mentioned in the axioms of projective geometry nor defined from the notions mentioned there. The question "what is the sum of the three angles of a triangle" is meaningful in Euclidean geometry but meaningless in projective geometry.

A Euclidean model of a non-Euclidean geometry is a choice of some objects existing in Euclidean space and some relations between these objects that satisfy all axioms (and therefore, all theorems) of the non-Euclidean geometry. These Euclidean objects and relations "play" the non-Euclidean geometry like contemporary actors playing an ancient performance. Actors can imitate a situation that never occurred in reality. Relations between the actors on the stage imitate relations between the characters in the play. Likewise, the chosen relations between the chosen objects of the Euclidean model imitate the non-Euclidean relations. It shows that relations between objects are essential in mathematics, while the nature of the objects is not.

The word "geometry" (from Ancient Greek: geo- "earth", -metron "measurement") initially meant a practical way of processing lengths, regions and volumes in the space in which we live, but was then extended widely (as well as the notion of space in question here).

A space now consists of selected mathematical objects (for instance, functions on another space, or subspaces of another space, or just elements of a set) treated as points, and selected relationships between these points. Therefore, spaces are just mathematical structures of convenience. One may expect that the structures called "spaces" are perceived more geometrically than other mathematical objects, but this is not always true.

We classify spaces on three levels. Given that each mathematical theory describes its objects by some of their properties, the first question to ask is: which properties? This leads to the first (upper) classification level. On the second level, one takes into account answers to especially important questions (among the questions that make sense according to the first level). On the third level of classification, one takes into account answers to all possible questions.

Also, the distinction between a Euclidean plane and a Euclidean 3-dimensional space is not an upper-level distinction; the question "what is the dimension" makes sense in both cases.

The notion of isomorphism sheds light on the upper-level classification. Given a one-to-one correspondence between two spaces of the same upper-level class, one may ask whether it is an isomorphism or not. This question makes no sense for two spaces of different classes.

An isomorphism to itself is called an automorphism. Automorphisms of a Euclidean space are shifts, rotations, reflections and compositions of these. Euclidean space is homogeneous in the sense that every point can be transformed into every other point by some automorphism.

The transition from "Euclidean" to "topological" is forgetful. Topology distinguishes continuous from discontinuous, but does not distinguish rectilinear from curvilinear. Intuition tells us that the Euclidean structure cannot be restored from the topology. A proof uses an automorphism of the topological space (that is, self-homeomorphism) that is not an automorphism of the Euclidean space (that is, not a composition of shifts, rotations and reflections). Such transformation turns the given Euclidean structure into a (isomorphic but) different Euclidean structure; both Euclidean structures correspond to a single topological structure.

In contrast, the transition from "3-dim Euclidean" to "Euclidean" is not forgetful; a Euclidean space need not be 3-dimensional, but if it happens to be 3-dimensional, it is full-fledged, no structure is lost. In other words, the latter transition is injective (one-to-one), while the former transition is not injective (many-to-one). We denote injective transitions by an arrow with a barbed tail, "↣" rather than "→".

Both transitions are not surjective, that is, not every B-space results from some A-space. First, a 3-dim Euclidean space is a special (not general) case of a Euclidean space. Second, a topology of a Euclidean space is a special case of topology (for instance, it must be non-compact, and connected, etc). We denote surjective transitions by a two-headed arrow, "↠" rather than "→". See for example Fig. 4; there, the arrow from "real linear topological" to "real linear" is two-headed, since every real linear space admits some (at least one) topology compatible with its linear structure.

Both the linear and topological structures underlie the linear topological space (in other words, topological vector space) structure. A linear topological space is both a real or complex linear space and a topological space, such that the linear operations are continuous. So a linear space that is also topological is not in general a linear topological space.

Every finite-dimensional real or complex linear space is a linear topological space in the sense that it carries one and only one topology that makes it a linear topological space. The two structures, "finite-dimensional real or complex linear space" and "finite-dimensional linear topological space", are thus equivalent, that is, mutually underlying. Accordingly, every invertible linear transformation of a finite-dimensional linear topological space is a homeomorphism. The three notions of dimension (one algebraic and two topological) agree for finite-dimensional real linear spaces. In infinite-dimensional spaces, however, different topologies can conform to a given linear structure, and invertible linear transformations are generally not homeomorphisms.

Defined this way, affine and projective spaces are of algebraic nature; they can be real, complex, and more generally, over any field.

Every real or complex affine or projective space is also a topological space. An affine space is a non-compact manifold; a projective space is a compact manifold. In a real projective space a straight line is homeomorphic to a circle, therefore compact, in contrast to a straight line in a linear of affine space.

In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge. Every incomplete space is isometrically embedded, as a dense subset, into a complete space (the completion). Every compact metric space is complete; the real line is non-compact but complete; the open interval (0,1) is incomplete.

The set of all vectors of norm less than one is called the unit ball of a normed space. It is a convex, centrally symmetric set, generally not an ellipsoid; for example, it may be a polygon (in the plane) or, more generally, a polytope (in arbitrary finite dimension). The parallelogram law (called also parallelogram identity)

Smooth manifolds are not called "spaces", but could be. Every smooth manifold is a topological manifold, and can be embedded into a finite-dimensional linear space. Smooth surfaces in a finite-dimensional linear space are smooth manifolds: for example, the surface of an ellipsoid is a smooth manifold, a polytope is not. Real or complex finite-dimensional linear, affine and projective spaces are also smooth manifolds.

A "geometric body" of classical mathematics is much more regular than just a set of points. The boundary of the body is of zero volume. Thus, the volume of the body is the volume of its interior, and the interior can be exhausted by an infinite sequence of cubes. In contrast, the boundary of an arbitrary set of points can be of non-zero volume (an example: the set of all rational points inside a given cube). Measure theory succeeded in extending the notion of volume to a vast class of sets, the so-called measurable sets. Indeed, non-measurable sets almost never occur in applications.

Standard measurable spaces (also called standard Borel spaces) are especially useful due to some similarity to compact spaces (see ). Every bijective measurable mapping between standard measurable spaces is an isomorphism; that is, the inverse mapping is also measurable. And a mapping between such spaces is measurable if and only if its graph is measurable in the product space. Similarly, every bijective continuous mapping between compact metric spaces is a homeomorphism; that is, the inverse mapping is also continuous. And a mapping between such spaces is continuous if and only if its graph is closed in the product space.

Every Borel set in a Euclidean space (and more generally, in a complete separable metric space), endowed with the Borel σ-algebra, is a standard measurable space. All uncountable standard measurable spaces are mutually isomorphic.

Sets of measure 0, called null sets, are negligible. Accordingly, a "mod 0 isomorphism" is defined as isomorphism between subsets of full measure (that is, with negligible complement).

These spaces are less geometric. In particular, the idea of dimension, applicable (in one form or another) to all other spaces, does not apply to measurable, measure and probability spaces.

One of the building blocks of a scheme is a topological space. Topological spaces have continuous functions, but continuous functions are too general to reflect the underlying algebraic structure of interest. The other ingredient in a scheme, therefore, is a sheaf on the topological space, called the "structure sheaf". On each open subset of the topological space, the sheaf specifies a collection of functions, called "regular functions". The topological space and the structure sheaf together are required to satisfy conditions that mean the functions come from algebraic operations.

A further generalization are the algebraic stacks, also called Artin stacks. DM stacks are limited to quotients by finite group actions. While this suffices for many problems in moduli theory, it is too restrictive for others, and Artin stacks permit more general quotients.

Every space treated in Section "Types of spaces" above, except for "Non-commutative geometry", "Schemes" and "Topoi" subsections, is a set (the "principal base set" of the structure, according to Bourbaki) endowed with some additional structure; elements of the base set are usually called "points" of this space. In contrast, elements of (the base set of) an algebraic structure usually are not called "points".