# Snub 24-cell

In geometry, the **snub 24-cell** or **snub disicositetrachoron** is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

Topologically, under its highest symmetry, [3^{+},4,3], as an alternation of a truncated 24-cell, it contains 24 pyritohedra (an icosahedron with T_{h} symmetry), 24 regular tetrahedra, and 96 triangular pyramids.

It is one of three semiregular 4-polytopes made of two or more cells which are Platonic solids, discovered by Thorold Gosset in his 1900 paper. He called it a *tetricosahedric* for being made of tetrahedron and icosahedron cells. (The other two are the rectified 5-cell and rectified 600-cell.)

The vertices of a snub 24-cell centered at the origin of 4-space, with edges of length 2, are obtained by taking even permutations of

These 96 vertices can be found by partitioning each of the 96 edges of a 24-cell in the golden ratio in a consistent manner, in much the same way that the 12 vertices of an icosahedron or "snub octahedron" can be produced by partitioning the 12 edges of an octahedron in the golden ratio. This can be done by first placing vectors along the 24-cell's edges such that each two-dimensional face is bounded by a cycle, then similarly partitioning each edge into the golden ratio along the direction of its vector.^{[4]} This is equivalent to the snub truncation of the 24-cell described below.

The 96 vertices of the snub 24-cell, together with the 24 vertices of a 24-cell, form the 120 vertices of the 600-cell.

The snub 24-cell is derived from the 24-cell by a special form of truncation.

Truncations remove vertices by cutting through the edges incident to the vertex; forms of truncation differ by where on the edge the cut is made. The common truncations of the 24-cell include the recitified 24-cell (which cuts each edge at its midpoint, producing a polytope bounded by 24 cubes and 24 cuboctahedra), and the truncated 24-cell (which cuts each edge one-third of its length from the vertex, producing a polytope bounded by 24 cubes and 24 truncated octahedra). In these truncations a cube is produced in place of the removed vertex, because the vertex figure of the 24-cell is a cube and the cuts are equidistant from the vertex.

The snub truncation of the 24-cell^{[5]} cuts each edge into two golden sections (such that the larger section is in the golden ratio ~1.618 to the smaller section, and the original edge is in the golden ratio to the larger section). The cut must be made in alternate directions on alternate edges incident to each vertex, in order to have a coherent result. The edges incident to a vertex in the 24-cell are the 8 radii of its cubical vertex figure. The only way to choose alternate radii of a cube is to choose the four radii of a tetrahedron (inscribed in the cube) to be cut at the smaller section of their length from the vertex, and the opposite four radii (of the other tetrahedron that can be inscribed in the cube) to be cut at the larger section of their length from the vertex. There are of course two ways to do this; both produce a cluster of five regular tetrahedra in place of the removed vertex, rather than a cube.

This construction has an analogy in 3 dimensions: the construction of the icosahedron (the "snub octahedron") from the octahedron, by the same method.^{[6]} That is how the snub-24 cell's icosahedra are produced from the 24-cell's octahedra during truncation.

The snub 24-cell is related to the truncated 24-cell by an alternation operation. Half the vertices are deleted, the 24 truncated octahedron cells become 24 icosahedron cells, the 24 cubes become 24 tetrahedron cells, and the 96 deleted vertex voids create 96 new tetrahedron cells.

The snub 24-cell may also be constructed by a particular *diminishing* of the 600-cell: by removing 24 vertices from the 600-cell corresponding to those of an inscribed 24-cell, and then taking the convex hull of the remaining vertices. This is equivalent to removing 24 icosahedral pyramids from the 600-cell.

The icosahedral cells fit together face-to-face leaving voids between them filled by clusters of five tetrahedral cells.

Each icosahedral cell is joined to 8 other icosahedral cells at 8 triangular faces in the positions corresponding to an inscribing octahedron. The remaining triangular faces are joined to tetrahedral cells, which occur in pairs that share an edge on the icosahedral cell.

The tetrahedral cells may be divided into two groups, of 96 yellow cells and 24 red cells respectively (as colored in the net illustration). Each yellow tetrahedral cell is joined via its triangular faces to 3 blue icosahedral cells and one red tetrahedral cell, while each red tetrahedral cell is joined to 4 yellow tetrahedra. Thus, the tetrahedral cells occur in clusters of five (four yellow cells face-bonded around a red central one, each red/yellow pair lying in a different hyperplane). The red central tetrahedron of the five shares each of its six edges with a different icosahedral cell, and with the pair of yellow tetrahedral cells which shares that edge on the icosahedral cell.

The snub 24-cell has three vertex-transitive colorings based on a Wythoff construction on a Coxeter group from which it is alternated: F_{4} defines 24 interchangeable icosahedra, while the B_{4} group defines two groups of icosahedra in an 8:16 counts, and finally the D_{4} group has 3 groups of icosahedra with 8:8:8 counts.

Conversely, the 600-cell may be constructed from the snub 24-cell by augmenting it with 24 icosahedral pyramids.

The *snub 24-cell* can be obtained as a diminishing of the 600-cell at 24 of its vertices, in fact those of a vertex inscribed 24-cell. There is also a further such *bi-*diminishing, when the vertices of a second vertex inscribed 24-cell would be diminished as well. Accordingly, this one is known as the bi-24-diminished 600-cell.

The *snub 24-cell* is also called a semi-snub 24-cell because it is not a true snub (alternation of an omnitruncated 24-cell). The full snub 24-cell can also be constructed although it is not uniform, being composed of irregular tetrahedra on the alternated vertices.

The snub 24-cell is the largest facet of the 4-dimensional honeycomb, the snub 24-cell honeycomb.

The snub 24-cell is a part of the F_{4} symmetry family of uniform 4-polytopes.