# Simple Lie group

In mathematics, a **simple Lie group** is a connected non-abelian Lie group *G* which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces.

The simple Lie groups were first classified by Wilhelm Killing and later perfected by Élie Cartan. This classification is often referred to as Killing-Cartan classification.

Unfortunately, there is no universally accepted definition of a simple Lie group. In particular, it is not always defined as a Lie group that is simple as an abstract group. Authors differ on whether a simple Lie group has to be connected, or on whether it is allowed to have a non-trivial center, or on whether ℝ is a simple Lie group.

The most common definition is that a Lie group is simple if it is connected, non-abelian, and every closed *connected* normal subgroup is either the identity or the whole group. In particular, simple groups are allowed to have a non-trivial center, but ℝ is not simple.

In this article the connected simple Lie groups with trivial center are listed. Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover, whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the center.

An equivalent definition of a simple Lie group follows from the Lie correspondence: A connected Lie group is simple if its Lie algebra is simple. An important technical point is that a simple Lie group may contain *discrete* normal subgroups, hence being a simple Lie group is different from being simple as an abstract group.

Simple Lie groups include many classical Lie groups, which provide a group-theoretic underpinning for spherical geometry, projective geometry and related geometries in the sense of Felix Klein's Erlangen program. It emerged in the course of classification of simple Lie groups that there exist also several exceptional possibilities not corresponding to any familiar geometry. These *exceptional groups* account for many special examples and configurations in other branches of mathematics, as well as contemporary theoretical physics.

The Lie algebra of a simple Lie group is a simple Lie algebra. This is a one-to-one correspondence between connected simple Lie groups with trivial center and simple Lie algebras of dimension greater than 1. (Authors differ on whether the one-dimensional Lie algebra should be counted as simple.)

Over the complex numbers the semisimple Lie algebras are classified by their Dynkin diagrams, of types "ABCDEFG". If *L* is a real simple Lie algebra, its complexification is a simple complex Lie algebra, unless *L* is already the complexification of a Lie algebra, in which case the complexification of *L* is a product of two copies of *L*. This reduces the problem of classifying the real simple Lie algebras to that of finding all the real forms of each complex simple Lie algebra (i.e., real Lie algebras whose complexification is the given complex Lie algebra). There are always at least 2 such forms: a split form and a compact form, and there are usually a few others. The different real forms correspond to the classes of automorphisms of order at most 2 of the complex Lie algebra.

First, the universal cover of a symmetric space is still symmetric, so we can reduce to the case of simply connected symmetric spaces. (For example, the universal cover of a real projective plane is a sphere.)

Second, the product of symmetric spaces is symmetric, so we may as well just classify the irreducible simply connected ones (where irreducible means they cannot be written as a product of smaller symmetric spaces).

The irreducible simply connected symmetric spaces are the real line, and exactly two symmetric spaces corresponding to each *non-compact* simple Lie group *G*,
one compact and one non-compact. The non-compact one is a cover of the quotient of *G* by a maximal compact subgroup *H*, and the compact one is a cover of the quotient of
the compact form of *G* by the same subgroup *H*. This duality between compact and non-compact symmetric spaces is a generalization of the well known duality between spherical and hyperbolic geometry.

A symmetric space with a compatible complex structure is called Hermitian. The compact simply connected irreducible Hermitian symmetric spaces fall into 4 infinite families with 2 exceptional ones left over, and each has a non-compact dual. In addition the complex plane is also a Hermitian symmetric space; this gives the complete list of irreducible Hermitian symmetric spaces.

The four families are the types A III, B I and D I for *p* = 2, D III, and C I, and the two exceptional ones are types E III and E VII of complex dimensions 16 and 27.

In the symbols such as *E*_{6}^{−26} for the exceptional groups, the exponent −26 is the signature of an invariant symmetric bilinear form that is negative definite on the maximal compact subgroup. It is equal to the dimension of the group minus twice the dimension of a maximal compact subgroup.

The fundamental group listed in the table below is the fundamental group of the simple group with trivial center. Other simple groups with the same Lie algebra correspond to subgroups of this fundamental group (modulo the action of the outer automorphism group).

Simple Lie groups are fully classified. The classification is usually stated in several steps, namely:

Every simple complex Lie algebra has a unique real form whose corresponding centerless Lie group is compact. It turns out that the simply connected Lie group in these cases is also compact. Compact Lie groups have a particularly tractable representation theory because of the Peter–Weyl theorem. Just like simple complex Lie algebras, centerless compact Lie groups are classified by Dynkin diagrams (first classified by Wilhelm Killing and Élie Cartan).

For the infinite (A, B, C, D) series of Dynkin diagrams, the simply connected compact Lie group associated to each Dynkin diagram can be explicitly described as a matrix group, with the corresponding centerless compact Lie group described as the quotient by a subgroup of scalar matrices.

A_{r} has as its associated simply connected compact group the special unitary group, SU(*r* + 1) and as its associated centerless compact group the projective unitary group PU(*r* + 1).

B_{r} has as its associated centerless compact groups the odd special orthogonal groups, SO(2*r* + 1). This group is not simply connected however: its universal (double) cover is the Spin group.

The diagram D_{2} is two isolated nodes, the same as A_{1} ∪ A_{1}, and this coincidence corresponds to the covering map homomorphism from SU(2) × SU(2) to SO(4) given by quaternion multiplication; see quaternions and spatial rotation. Thus SO(4) is not a simple group. Also, the diagram D_{3} is the same as A_{3}, corresponding to a covering map homomorphism from SU(4) to SO(6).

In addition to the four families *A*_{i}, *B*_{i}, *C*_{i}, and *D*_{i} above, there are five so-called exceptional Dynkin diagrams G_{2}, F_{4}, E_{6}, E_{7}, and E_{8}; these exceptional Dynkin diagrams also have associated simply connected and centerless compact groups. However, the groups associated to the exceptional families are more difficult to describe than those associated to the infinite families, largely because their descriptions make use of exceptional objects. For example, the group associated to G_{2} is the automorphism group of the octonions, and the group associated to F_{4} is the automorphism group of a certain Albert algebra.

The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple.

A **simply laced group** is a Lie group whose Dynkin diagram only contain simple links, and therefore all the nonzero roots of the corresponding Lie algebra have the same length. The A, D and E series groups are all simply laced, but no group of type B, C, F, or G is simply laced.