# Schrödinger equation

The **Schrödinger equation** is a linear partial differential equation that governs the wave function of a quantum-mechanical system.^{[1]}^{: 1–2 } It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.^{[2]}^{[3]}

Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of a wave function, the quantum-mechanical characterization of an isolated physical system. The equation can be derived from the fact that the time-evolution operator must be unitary, and must therefore be generated by the exponential of a self-adjoint operator, which is the quantum Hamiltonian.

The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions. The other formulations of quantum mechanics include matrix mechanics, introduced by Werner Heisenberg, and the path integral formulation, developed chiefly by Richard Feynman. Paul Dirac incorporated matrix mechanics and the Schrödinger equation into a single formulation. When these approaches are compared, the use of the Schrödinger equation is sometimes called "wave mechanics".

Introductory courses on physics or chemistry typically introduce the Schrödinger equation in a way that can be appreciated knowing only the concepts and notations of basic calculus, particularly derivatives with respect to space and time. A special case of the Schrödinger equation that admits a statement in those terms is the position-space Schrödinger equation for a single nonrelativistic particle in one dimension:

The form of the Schrödinger equation depends on the physical situation. The most general form is the time-dependent Schrödinger equation, which gives a description of a system evolving with time:^{[9]}^{: 143 }

The term "Schrödinger equation" can refer to both the general equation, or the specific nonrelativistic version. The general equation is indeed quite general, used throughout quantum mechanics, for everything from the Dirac equation to quantum field theory, by plugging in diverse expressions for the Hamiltonian. The specific nonrelativistic version is an approximation that yields accurate results in many situations, but only to a certain extent (see relativistic quantum mechanics and relativistic quantum field theory).

The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for *any* state. Stationary states can also be described by a simpler form of the Schrödinger equation, the time-independent Schrödinger equation.

The Schrödinger equation is often presented using quantities varying as functions of position, but as a vector-operator equation it has a valid representation in any arbitrary complete basis of kets in Hilbert space. As mentioned above, "bases" that lie outside the physical Hilbert space are also employed for calculational purposes. This is illustrated by the *position-space* and *momentum-space* Schrödinger equations for a nonrelativistic, spinless particle.^{[8]}^{: 182 } The Hilbert space for such a particle is the space of complex square-integrable functions on three-dimensional Euclidean space, and its Hamiltonian is the sum of a kinetic-energy term that is quadratic in the momentum operator and a potential-energy term:

The Schrödinger equation is consistent with local probability conservation.^{[8]}^{: 238 } Multiplying the Schrödinger equation on the right by the complex conjugate wave function, and multiplying the wave function to the left of the complex conjugate of the Schrödinger equation, and subtracting, gives the continuity equation for probability:

If the Hamiltonian is not an explicit function of time, the equation is separable into a product of spatial and temporal parts.^{[12]} Solving the equation by separation of variables means seeking a solution of the form

This generalizes to any number of particles in any number of dimensions (in a time-independent potential): the standing wave solutions of the time-dependent equation are the states with definite energy, instead of a probability distribution of different energies. In physics, these standing waves are called "stationary states" or "energy eigenstates"; in chemistry they are called "atomic orbitals" or "molecular orbitals". Superpositions of energy eigenstates change their properties according to the relative phases between the energy levels. The energy eigenstates form a basis: any wave function may be written as a sum over the discrete energy states or an integral over continuous energy states, or more generally as an integral over a measure. This is the spectral theorem in mathematics, and in a finite-dimensional state space it is just a statement of the completeness of the eigenvectors of a Hermitian matrix.

Separation of variables can also be a useful method for the time-independent Schrödinger equation. For example, depending on the symmetry of the problem, the Cartesian axes might be separated,

The general solutions of the Schrödinger equation for the particle in a box are

A finite potential well is the generalization of the infinite potential well problem to potential wells having finite depth. The finite potential well problem is mathematically more complicated than the infinite particle-in-a-box problem as the wave function is not pinned to zero at the walls of the well. Instead, the wave function must satisfy more complicated mathematical boundary conditions as it is nonzero in regions outside the well. Another related problem is that of the rectangular potential barrier, which furnishes a model for the quantum tunneling effect that plays an important role in the performance of modern technologies such as flash memory and scanning tunneling microscopy.

The harmonic oscillator, like the particle in a box, illustrates the generic feature of the Schrödinger equation that the energies of bound eigenstates are discretized.^{[8]}^{: 352 }

The Schrödinger equation for the hydrogen atom (or a hydrogen-like atom) is

The Schrödinger equation for a hydrogen atom can be solved by separation of variables.^{[16]} In this case, spherical polar coordinates are the most convenient. Thus,

It is typically not possible to solve the Schrödinger equation exactly for situations of physical interest. Accordingly, approximate solutions are obtained using techniques like variational methods and WKB approximation. It is also common to treat a problem of interest as a small modification to a problem that can be solved exactly, a method known as perturbation theory.

Wave functions are not always the most convenient way to describe quantum systems and their behavior. When the preparation of a system is only imperfectly known, or when the system under investigation is a part of a larger whole, density matrices may be used instead.^{[18]}^{: 74 } A density matrix is a positive semi-definite operator whose trace is equal to 1. (The term "density operator" is also used, particularly when the underlying Hilbert space is infinite-dimensional.) The set of all density matrices is convex, and the extreme points are the operators that project onto vectors in the Hilbert space. These are the density-matrix representations of wave functions; in Dirac notation, they are written

The density-matrix analogue of the Schrödinger equation for wave functions is^{[19]}^{[20]}

Unitary evolution of a density matrix conserves its von Neumann entropy.^{[18]}^{: 267 }

The one-particle Schrödinger equation described above is valid essentially in the nonrelativistic domain. For one reason, it is essentially invariant under Galilean transformations, which comprise the symmetry group of Newtonian dynamics.^{[note 2]} Moreover, processes that change particle number are natural in relativity, and so an equation for one particle (or any fixed number thereof) can only be of limited use.^{[22]} A more general form of the Schrödinger equation that also applies in relativistic situations can be formulated within quantum field theory (QFT), a framework that allows the combination of quantum mechanics with special relativity. The region in which both simultaneously apply may be described by relativistic quantum mechanics. Such descriptions may use time evolution generated by a Hamiltonian operator, as in the Schrödinger functional method.^{[23]}^{[24]}^{[25]}^{[26]}

Attempts to combine quantum physics with special relativity began with building relativistic wave equations from the relativistic energy–momentum relation

This has again the form of the Schrödinger equation, with the time derivative of the wave function being given by a Hamiltonian operator acting upon the wave function. Including influences upon the particle requires modifying the Hamiltonian operator. For example, the Dirac Hamiltonian for a particle of mass *m* and electric charge *q* in an electromagnetic field (described by the electromagnetic potentials *φ* and **A**) is:

For the Klein–Gordon equation, the general form of the Schrödinger equation is inconvenient to use, and in practice the Hamiltonian is not expressed in an analogous way to the Dirac Hamiltonian. The equations for relativistic quantum fields, of which the Klein–Gordon and Dirac equations are two examples, can be obtained in other ways, such as starting from a Lagrangian density and using the Euler–Lagrange equations for fields, or using the representation theory of the Lorentz group in which certain representations can be used to fix the equation for a free particle of given spin (and mass).

In general, the Hamiltonian to be substituted in the general Schrödinger equation is not just a function of the position and momentum operators (and possibly time), but also of spin matrices. Also, the solutions to a relativistic wave equation, for a massive particle of spin *s*, are complex-valued 2(2*s* + 1)-component spinor fields.

In 1921, prior to de Broglie, Arthur C. Lunn at the University of Chicago had used the same argument based on the completion of the relativistic energy–momentum 4-vector to derive what we now call the de Broglie relation.^{[29]}^{[30]} Unlike de Broglie, Lunn went on to formulate the differential equation now known as the Schrödinger equation and solve for its energy eigenvalues for the hydrogen atom. Unfortunately the paper was rejected by the *Physical Review*, as recounted by Kamen.^{[31]}

Following up on de Broglie's ideas, physicist Peter Debye made an offhand comment that if particles behaved as waves, they should satisfy some sort of wave equation. Inspired by Debye's remark, Schrödinger decided to find a proper 3-dimensional wave equation for the electron. He was guided by William Rowan Hamilton's analogy between mechanics and optics,^{[note 3]} encoded in the observation that the zero-wavelength limit of optics resembles a mechanical system—the trajectories of light rays become sharp tracks that obey Fermat's principle, an analog of the principle of least action.^{[32]}

However, by that time, Arnold Sommerfeld had refined the Bohr model with relativistic corrections.^{[34]}^{[35]} Schrödinger used the relativistic energy–momentum relation to find what is now known as the Klein–Gordon equation in a Coulomb potential (in natural units):

He found the standing waves of this relativistic equation, but the relativistic corrections disagreed with Sommerfeld's formula. Discouraged, he put away his calculations and secluded himself with a mistress in a mountain cabin in December 1925.^{[36]}

The already ... mentioned psi-function.... is now the means for predicting probability of measurement results. In it is embodied the momentarily attained sum of theoretically based future expectation, somewhat as laid down in a catalog.

The Schrödinger equation provides a way to calculate the wave function of a system and how it changes dynamically in time. However, the Schrödinger equation does not directly say *what,* exactly, the wave function is. The meaning of the Schrödinger equation and how the mathematical entities in it relate to physical reality depends upon the interpretation of quantum mechanics that one adopts.

In the views often grouped together as the Copenhagen interpretation, a system's wave function is a collection of statistical information about that system. The Schrödinger equation relates information about the system at one time to information about it at another. While the time-evolution process represented by the Schrödinger equation is continuous and deterministic, in that knowing the wave function at one instant is in principle sufficient to calculate it for all future times, wave functions can also change discontinuously and stochastically during a measurement. The wave function changes, according to this school of thought, because new information is available. The post-measurement wave function generally cannot be known prior to the measurement, but the probabilities for the different possibilities can be calculated using the Born rule.^{[18]}^{[43]}^{[note 4]} Other, more recent interpretations of quantum mechanics, such as relational quantum mechanics and QBism also give the Schrödinger equation a status of this sort.^{[46]}^{[47]}

Schrödinger himself suggested in 1952 that the different terms of a superposition evolving under the Schrödinger equation are "not alternatives but all really happen simultaneously". This has been interpreted as an early version of Everett's many-worlds interpretation.^{[48]}^{[49]}^{[note 5]} This interpretation, formulated independently in 1956, holds that *all* the possibilities described by quantum theory *simultaneously* occur in a multiverse composed of mostly independent parallel universes.^{[51]} This interpretation removes the axiom of wave function collapse, leaving only continuous evolution under the Schrödinger equation, and so all possible states of the measured system and the measuring apparatus, together with the observer, are present in a real physical quantum superposition. While the multiverse is deterministic, we perceive non-deterministic behavior governed by probabilities, because we don't observe the multiverse as a whole, but only one parallel universe at a time. Exactly how this is supposed to work has been the subject of much debate. Why we should assign probabilities at all to outcomes that are certain to occur in some worlds, and why should the probabilities be given by the Born rule?^{[52]} Several ways to answer these questions in the many-worlds framework have been proposed, but there is no consensus on whether they are successful.^{[53]}^{[54]}^{[55]}

Bohmian mechanics reformulates quantum mechanics to make it deterministic, at the price of making it explicitly nonlocal (a price exacted by Bell's theorem). It attributes to each physical system not only a wave function but in addition a real position that evolves deterministically under a nonlocal guiding equation. The evolution of a physical system is given at all times by the Schrödinger equation together with the guiding equation.^{[56]}