# Riemann–Roch theorem

Relation between genus, degree, and dimension of function spaces over surfaces

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

Initially proved as Riemann's inequality by Riemann (1857), the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student Gustav Roch (1865). It was later generalized to algebraic curves, to higher-dimensional varieties and beyond.

The theorem will now be illustrated for surfaces of low genus. There are also a number other closely related theorems: an equivalent formulation of this theorem using line bundles and a generalization of the theorem to algebraic curves.

The theorem of the previous section is the special case of when L is a point bundle.

Every item in the above formulation of the Riemann–Roch theorem for divisors on Riemann surfaces has an analogue in algebraic geometry. The analogue of a Riemann surface is a non-singular algebraic curve C over a field k. The difference in terminology (curve vs. surface) is because the dimension of a Riemann surface as a real manifold is two, but one as a complex manifold. The compactness of a Riemann surface is paralleled by the condition that the algebraic curve be complete, which is equivalent to being projective. Over a general field k, there is no good notion of singular (co)homology. The so-called geometric genus is defined as

The smoothness assumption in the theorem can be relaxed, as well: for a (projective) curve over an algebraically closed field, all of whose local rings are Gorenstein rings, the same statement as above holds, provided that the geometric genus as defined above is replaced by the arithmetic genus ga, defined as

(For smooth curves, the geometric genus agrees with the arithmetic one.) The theorem has also been extended to general singular curves (and higher-dimensional varieties).[7]

is generally considered while constructing the Hilbert scheme of curves (and the moduli of algebraic curves). This polynomial is

An irreducible plane algebraic curve of degree d has (d − 1)(d − 2)/2 − g singularities, when properly counted. It follows that, if a curve has (d − 1)(d − 2)/2 different singularities, it is a rational curve and, thus, admits a rational parameterization.

The Riemann–Hurwitz formula concerning (ramified) maps between Riemann surfaces or algebraic curves is a consequence of the Riemann–Roch theorem.

The theorem for compact Riemann surfaces can be deduced from the algebraic version using Chow's Theorem and the GAGA principle: in fact, every compact Riemann surface is defined by algebraic equations in some complex projective space. (Chow's Theorem says that any closed analytic subvariety of projective space is defined by algebraic equations, and the GAGA principle says that sheaf cohomology of an algebraic variety is the same as the sheaf cohomology of the analytic variety defined by the same equations).

The Riemann–Roch theorem for curves was proved for Riemann surfaces by Riemann and Roch in the 1850s and for algebraic curves by Friedrich Karl Schmidt in 1931 as he was working on perfect fields of finite characteristic. As stated by Peter Roquette,[12]

The first main achievement of F. K. Schmidt is the discovery that the classical theorem of Riemann–Roch on compact Riemann surfaces can be transferred to function fields with finite base field. Actually, his proof of the Riemann–Roch theorem works for arbitrary perfect base fields, not necessarily finite.

It is foundational in the sense that the subsequent theory for curves tries to refine the information it yields (for example in the Brill–Noether theory).

In algebraic geometry of dimension two such a formula was found by the geometers of the Italian school; a Riemann–Roch theorem for surfaces was proved (there are several versions, with the first possibly being due to Max Noether).

An n-dimensional generalisation, the Hirzebruch–Riemann–Roch theorem, was found and proved by Friedrich Hirzebruch, as an application of characteristic classes in algebraic topology; he was much influenced by the work of Kunihiko Kodaira. At about the same time Jean-Pierre Serre was giving the general form of Serre duality, as we now know it.

Alexander Grothendieck proved a far-reaching generalization in 1957, now known as the Grothendieck–Riemann–Roch theorem. His work reinterprets Riemann–Roch not as a theorem about a variety, but about a morphism between two varieties. The details of the proofs were published by Armand Borel and Jean-Pierre Serre in 1958.[13] Later, Grothendieck and his collaborators simplified and generalized the proof.[14]

Finally a general version was found in algebraic topology, too. These developments were essentially all carried out between 1950 and 1960. After that the Atiyah–Singer index theorem opened another route to generalization. Consequently, the Euler characteristic of a coherent sheaf is reasonably computable. For just one summand within the alternating sum, further arguments such as vanishing theorems must be used.