# Real number

Real numbers can be thought of as points on an infinitely long line called the number line or real line, where the points corresponding to integers are equally spaced. Any real number can be determined by a possibly infinite decimal representation, such as that of 8.632, where each consecutive digit is measured in units one-tenth the size of the previous one. The real line can be thought of as a part of the complex plane, and the real numbers can be thought of as a part of the complex numbers.

Real numbers can be thought of as points on an infinitely long number line

Simple fractions were used by the Egyptians around 1000 BC; the Vedic "Shulba Sutras" ("The rules of chords") in c. 600 BC include what may be the first "use" of irrational numbers. The concept of irrationality was implicitly accepted by early Indian mathematicians such as Manava (c. 750–690 BC), who were aware that the square roots of certain numbers, such as 2 and 61, could not be exactly determined.[5] Around 500 BC, the Greek mathematicians led by Pythagoras realized the need for irrational numbers, in particular the irrationality of the square root of 2.

The Middle Ages brought about the acceptance of zero, negative numbers, integers, and fractional numbers, first by Indian and Chinese mathematicians, and then by Arabic mathematicians, who were also the first to treat irrational numbers as algebraic objects (the latter being made possible by the development of algebra).[6] Arabic mathematicians merged the concepts of "number" and "magnitude" into a more general idea of real numbers.[7] The Egyptian mathematician Abū Kāmil Shujā ibn Aslam (c. 850–930) was the first to accept irrational numbers as solutions to quadratic equations, or as coefficients in an equation (often in the form of square roots, cube roots and fourth roots).[8]

In the 16th century, Simon Stevin created the basis for modern decimal notation, and insisted that there is no difference between rational and irrational numbers in this regard.

In the 17th century, Descartes introduced the term "real" to describe roots of a polynomial, distinguishing them from "imaginary" ones.

In the 18th and 19th centuries, there was much work on irrational and transcendental numbers. Johann Heinrich Lambert (1761) gave the first flawed proof that π cannot be rational; Adrien-Marie Legendre (1794) completed the proof,[9] and showed that π is not the square root of a rational number.[10] Paolo Ruffini (1799) and Niels Henrik Abel (1842) both constructed proofs of the Abel–Ruffini theorem: that the general quintic or higher equations cannot be solved by a general formula involving only arithmetical operations and roots.

Évariste Galois (1832) developed techniques for determining whether a given equation could be solved by radicals, which gave rise to the field of Galois theory. Joseph Liouville (1840) showed that neither e nor e2 can be a root of an integer quadratic equation, and then established the existence of transcendental numbers; Georg Cantor (1873) extended and greatly simplified this proof.[11] Charles Hermite (1873) first proved that e is transcendental, and Ferdinand von Lindemann (1882), showed that π is transcendental. Lindemann's proof was much simplified by Weierstrass (1885), still further by David Hilbert (1893), and has finally been made elementary by Adolf Hurwitz[12] and Paul Gordan.[13]

The development of calculus in the 18th century used the entire set of real numbers without having defined them rigorously. The first rigorous definition was published by Georg Cantor in 1871. In 1874, he showed that the set of all real numbers is uncountably infinite, but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his first method was not his famous diagonal argument, which he published in 1891. For more, see Cantor's first uncountability proof.

These properties imply the Archimedean property (which is not implied by other definitions of completeness), which states that the set of integers has no upper bound in the reals. In fact, if this were false, then the integers would have a least upper bound N; then, N – 1 would not be an upper bound, and there would be an integer n such that n > N – 1, and thus n + 1 > N, which is a contradiction with the upper-bound property of N.

The real numbers can be constructed as a completion of the rational numbers, in such a way that a sequence defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) converges to a unique real number—in this case π. For details and other constructions of real numbers, see construction of the real numbers.

More formally, the real numbers have the two basic properties of being an ordered field, and having the least upper bound property. The first says that real numbers comprise a field, with addition and multiplication as well as division by non-zero numbers, which can be totally ordered on a number line in a way compatible with addition and multiplication. The second says that, if a non-empty set of real numbers has an upper bound, then it has a real least upper bound. The second condition distinguishes the real numbers from the rational numbers: for example, the set of rational numbers whose square is less than 2 is a set with an upper bound (e.g. 1.5) but no (rational) least upper bound: hence the rational numbers do not satisfy the least upper bound property.

A main reason for using real numbers is so that many sequences have limits. More formally, the reals are complete (in the sense of metric spaces or uniform spaces, which is a different sense than the Dedekind completeness of the order in the previous section):

A sequence (xn) of real numbers is called a Cauchy sequence if for any ε > 0 there exists an integer N (possibly depending on ε) such that the distance |xnxm| is less than ε for all n and m that are both greater than N. This definition, originally provided by Cauchy, formalizes the fact that the xn eventually come and remain arbitrarily close to each other.

A sequence (xn) converges to the limit x if its elements eventually come and remain arbitrarily close to x, that is, if for any ε > 0 there exists an integer N (possibly depending on ε) such that the distance |xnx| is less than ε for n greater than N.

Every convergent sequence is a Cauchy sequence, and the converse is true for real numbers, and this means that the topological space of the real numbers is complete.

The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).

The completeness property of the reals is the basis on which calculus, and, more generally mathematical analysis are built. In particular, the test that a sequence is a Cauchy sequence allows proving that a sequence has a limit, without computing it, and even without knowing it.

The real numbers are often described as "the complete ordered field", a phrase that can be interpreted in several ways.

First, an order can be lattice-complete. It is easy to see that no ordered field can be lattice-complete, because it can have no largest element (given any element z, z + 1 is larger).

Additionally, an order can be Dedekind-complete, see § Axiomatic approach. The uniqueness result at the end of that section justifies using the word "the" in the phrase "complete ordered field" when this is the sense of "complete" that is meant. This sense of completeness is most closely related to the construction of the reals from Dedekind cuts, since that construction starts from an ordered field (the rationals) and then forms the Dedekind-completion of it in a standard way.

As a topological space, the real numbers are separable. This is because the set of rationals, which is countable, is dense in the real numbers. The irrational numbers are also dense in the real numbers, however they are uncountable and have the same cardinality as the reals.

The real numbers form a metric space: the distance between x and y is defined as the absolute value |xy|. By virtue of being a totally ordered set, they also carry an order topology; the topology arising from the metric and the one arising from the order are identical, but yield different presentations for the topology—in the order topology as ordered intervals, in the metric topology as epsilon-balls. The Dedekind cuts construction uses the order topology presentation, while the Cauchy sequences construction uses the metric topology presentation. The reals form a contractible (hence connected and simply connected), separable and complete metric space of Hausdorff dimension 1. The real numbers are locally compact but not compact. There are various properties that uniquely specify them; for instance, all unbounded, connected, and separable order topologies are necessarily homeomorphic to the reals.

The reals carry a canonical measure, the Lebesgue measure, which is the Haar measure on their structure as a topological group normalized such that the unit interval [0;1] has measure 1. There exist sets of real numbers that are not Lebesgue measurable, e.g. Vitali sets.

A real number may be either computable or uncomputable; either algorithmically random or not; and either arithmetically random or not.

The real numbers are most often formalized using the Zermelo–Fraenkel axiomatization of set theory, but some mathematicians study the real numbers with other logical foundations of mathematics. In particular, the real numbers are also studied in reverse mathematics and in constructive mathematics.[15]

The hyperreal numbers as developed by Edwin Hewitt, Abraham Robinson and others extend the set of the real numbers by introducing infinitesimal and infinite numbers, allowing for building infinitesimal calculus in a way closer to the original intuitions of Leibniz, Euler, Cauchy and others.

Edward Nelson's internal set theory enriches the Zermelo–Fraenkel set theory syntactically by introducing a unary predicate "standard". In this approach, infinitesimals are (non-"standard") elements of the set of the real numbers (rather than being elements of an extension thereof, as in Robinson's theory).

In the physical sciences, most physical constants such as the universal gravitational constant, and physical variables, such as position, mass, speed, and electric charge, are modeled using real numbers. In fact, the fundamental physical theories such as classical mechanics, electromagnetism, quantum mechanics, general relativity and the standard model are described using mathematical structures, typically smooth manifolds or Hilbert spaces, that are based on the real numbers, although actual measurements of physical quantities are of finite accuracy and precision.

Physicists have occasionally suggested that a more fundamental theory would replace the real numbers with quantities that do not form a continuum, but such proposals remain speculative.[16]

With some exceptions, most calculators do not operate on real numbers. Instead, they work with finite-precision approximations called floating-point numbers. In fact, most scientific computation uses floating-point arithmetic. Real numbers satisfy the usual rules of arithmetic, but floating-point numbers do not.

A real number is called computable if there exists an algorithm that yields its digits. Because there are only countably many algorithms,[18] but an uncountable number of reals, almost all real numbers fail to be computable. Moreover, the equality of two computable numbers is an undecidable problem. Some constructivists accept the existence of only those reals that are computable. The set of definable numbers is broader, but still only countable.

In set theory, specifically descriptive set theory, the Baire space is used as a surrogate for the real numbers since the latter have some topological properties (connectedness) that are a technical inconvenience. Elements of Baire space are referred to as "reals".

In mathematics, real is used as an adjective, meaning that the underlying field is the field of the real numbers (or the real field). For example, real matrix, real polynomial and real Lie algebra. The word is also used as a noun, meaning a real number (as in "the set of all reals").

The real numbers can be generalized and extended in several different directions: