Quotient ring

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring[1] or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra.[2][3] It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.)

Quotient rings are distinct from the so-called "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization.

The quotients R[X] / (X), R[X] / (X + 1), and R[X] / (X − 1) are all isomorphic to R and gain little interest at first. But note that R[X] / (X2) is called the dual number plane in geometric algebra. It consists only of linear binomials as "remainders" after reducing an element of R[X] by X2. This variation of a complex plane arises as a subalgebra whenever the algebra contains a real line and a nilpotent.

Suppose X and Y are two, non-commuting, indeterminates and form the free algebra RX, Y. Then Hamilton’s quaternions of 1843 can be cast as

If Y2 − 1 is substituted for Y2 + 1, then one obtains the ring of split-quaternions. The anti-commutative property YX = −XY implies that XY has as its square

Substituting minus for plus in both the quadratic binomials also results in split-quaternions.

The three types of biquaternions can also be written as quotients by use of the free algebra with three indeterminates RX, Y, Z⟩ and constructing appropriate ideals.

Clearly, if R is a commutative ring, then so is R / I; the converse, however, is not true in general.

The natural quotient map p has I as its kernel; since the kernel of every ring homomorphism is a two-sided ideal, we can state that two-sided ideals are precisely the kernels of ring homomorphisms.

The intimate relationship between ring homomorphisms, kernels and quotient rings can be summarized as follows: . More precisely, given a two-sided ideal I in R and a ring homomorphism f : RS whose kernel contains I, there exists precisely one ring homomorphism g : R / IS with gp = f (where p is the natural quotient map). The map g here is given by the well-defined rule g([a]) = f(a) for all a in R. Indeed, this universal property can be used to define quotient rings and their natural quotient maps.

the ring homomorphisms defined on R / I are essentially the same as the ring homomorphisms defined on R that vanish (i.e. are zero) on I

As a consequence of the above, one obtains the fundamental statement: every ring homomorphism f : RS induces a ring isomorphism between the quotient ring R / ker(f) and the image im(f). (See also: fundamental theorem on homomorphisms.)

The ideals of R and R / I are closely related: the natural quotient map provides a bijection between the two-sided ideals of R that contain I and the two-sided ideals of R / I (the same is true for left and for right ideals). This relationship between two-sided ideal extends to a relationship between the corresponding quotient rings: if M is a two-sided ideal in R that contains I, and we write M / I for the corresponding ideal in R / I (i.e. M / I = p(M)), the quotient rings R / M and (R / I) / (M / I) are naturally isomorphic via the (well-defined!) mapping a + M ↦ (a + I) + M / I.

The Chinese remainder theorem states that, if the ideal I is the intersection (or equivalently, the product) of pairwise coprime ideals I1, ..., Ik, then the quotient ring R / I is isomorphic to the product of the quotient rings R / In, n = 1, ..., k.

An associative algebra A over a commutative ring R is a ring itself. If I is an ideal in A (closed under R-multiplication), then A / I inherits the structure of an algebra over R and is the quotient algebra.