# Principal ideal domain

In mathematics, a **principal ideal domain**, or **PID**, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

Principal ideal domains are thus mathematical objects that behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If *x* and *y* are elements of a PID without common divisors, then every element of the PID can be written in the form *ax* + *by*.

Principal ideal domains are noetherian, they are integrally closed, they are unique factorization domains and Dedekind domains. All Euclidean domains and all fields are principal ideal domains.

Principal ideal domains appear in the following chain of class inclusions:

In a principal ideal domain, any two elements *a*,*b* have a greatest common divisor, which may be obtained as a generator of the ideal (*a*, *b*).

The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain.

Any Euclidean norm is a Dedekind-Hasse norm; thus, (5) shows that a Euclidean domain is a PID. (4) compares to:

An integral domain is a Bézout domain if and only if any two elements in it have a gcd *that is a linear combination of the two.* A Bézout domain is thus a GCD domain, and (4) gives yet another proof that a PID is a UFD.