# Parametric equation

In mathematics, a **parametric equation** defines a group of quantities as functions of one or more independent variables called parameters.^{[1]} Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a **parametric representation** or **parameterization** (alternatively spelled as **parametrisation**) of the object.^{[1]}^{[2]}^{[3]}

form a parametric representation of the unit circle, where *t* is the parameter: A point (*x*, *y*) is on the unit circle if and only if there is a value of *t* such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors:

Parametric representations are generally nonunique (see the "Examples in two dimensions" section below), so the same quantities may be expressed by a number of different parameterizations.^{[1]}

In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the dimension is *one* and *one* parameter is used, for surfaces dimension *two* and *two* parameters, etc.).

Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled *t*; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for convenience. Parameterizations are non-unique; more than one set of parametric equations can specify the same curve.^{[4]}

In kinematics, objects' paths through space are commonly described as parametric curves, with each spatial coordinate depending explicitly on an independent parameter (usually time). Used in this way, the set of parametric equations for the object's coordinates collectively constitute a vector-valued function for position. Such parametric curves can then be integrated and differentiated termwise. Thus, if a particle's position is described parametrically as

Another important use of parametric equations is in the field of computer-aided design (CAD).^{[5]} For example, consider the following three representations, all of which are commonly used to describe planar curves.

Each representation has advantages and drawbacks for CAD applications.

The explicit representation may be very complicated, or even may not exist. Moreover, it does not behave well under geometric transformations, and in particular under rotations. On the other hand, as a parametric equation and an implicit equation may easily be deduced from an explicit representation, when a simple explicit representation exists, it has the advantages of both other representations.

Implicit representations may make it difficult to generate points on the curve, and even to decide whether there are real points. On the other hand, they are well suited for deciding whether a given point is on a curve, or whether it is inside or outside of a closed curve.

Such decisions may be difficult with a parametric representation, but parametric representations are best suited for generating points on a curve, and for plotting it.^{[6]}

Numerous problems in integer geometry can be solved using parametric equations. A classical such solution is Euclid's parametrization of right triangles such that the lengths of their sides *a*, *b* and their hypotenuse *c* are coprime integers. As *a* and *b* are not both even (otherwise *a*, *b* and *c* would not be coprime), one may exchange them to have *a* even, and the parameterization is then

where the parameters *m* and *n* are positive coprime integers that are not both odd.

By multiplying *a*, *b* and *c* by an arbitrary positive integer, one gets a parametrization of all right triangles whose three sides have integer lengths.

where *p*, *q*, *r* are set-wise coprime polynomials, a resultant computation allows one to implicitize. More precisely, the implicit equation is the resultant with respect to *t* of *xr*(*t*) – *p*(*t*) and *yr*(*t*) – *q*(*t*)

In higher dimensions (either more than two coordinates or more than one parameter), the implicitization of rational parametric equations may by done with Gröbner basis computation; see .

To take the example of the circle of radius *a*, the parametric equations

can be implicitized in terms of *x* and *y* by way of the Pythagorean trigonometric identity:

can be (trivially) parameterized by using a free parameter *t*, and setting

A more sophisticated example is the following. Consider the unit circle which is described by the ordinary (Cartesian) equation

With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot.

In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist. In the case of the circle, such a *rational parameterization* is

With this pair of parametric equations, the point (−1, 0) is not represented by a real value of *t*, but by the limit of *x* and *y* when *t* tends to infinity.

An ellipse in canonical position (center at origin, major axis along the *X*-axis) with semi-axes *a* and *b* can be represented parametrically as

A Lissajous curve is similar to an ellipse, but the *x* and *y* sinusoids are not in phase. In canonical position, a Lissajous curve is given by

In all these formulae (*h*, *k*) are the center coordinates of the hyperbola, *a* is the length of the semi-major axis, and *b* is the length of the semi-minor axis.

A hypotrochoid is a curve traced by a point attached to a circle of radius *r* rolling around the inside of a fixed circle of radius *R*, where the point is at a distance *d* from the center of the interior circle.

Parametric equations are convenient for describing curves in higher-dimensional spaces. For example:

describes a three-dimensional curve, the helix, with a radius of *a* and rising by 2π*b* units per turn. The equations are identical in the plane to those for a circle.
Such expressions as the one above are commonly written as

A torus with major radius *R* and minor radius *r* may be defined parametrically as

As *u* varies from 0 to 2π the point on the surface moves about a short circle passing through the hole in the torus. As *t* varies from 0 to 2π the point on the surface moves about a long circle around the hole in the torus.