# Orbital elements Two elements define the orientation of the orbital plane in which the ellipse is embedded:

The angles of inclination, longitude of the ascending node, and argument of periapsis can also be described as the Euler angles defining the orientation of the orbit relative to the reference coordinate system.

Sometimes the epoch is considered a "seventh" orbital parameter, rather than part of the reference frame.

If the epoch is defined to be at the moment when one of the elements is zero, the number of unspecified elements is reduced to five. (The sixth parameter is still necessary to define the orbit; it is merely numerically set to zero by convention or "moved" into the definition of the epoch with respect to real-world clock time.)

Using, for example, the "mean anomaly" instead of "mean anomaly at epoch" means that time t must be specified as a seventh orbital element. Sometimes it is assumed that mean anomaly is zero at the epoch (by choosing the appropriate definition of the epoch), leaving only the five other orbital elements to be specified.

The inverse transformation, which computes the 3 coordinates in the I-J-K system given the 3 (or 2) coordinates in the x-y-z system, is represented by the inverse matrix. According to the rules of matrix algebra, the inverse matrix of the product of the 3 rotation matrices is obtained by inverting the order of the three matrices and switching the signs of the three Euler angles.

```1 27651U 03004A 07083.49636287 .00000119 00000-0 30706-4 0 2692
2 27651 039.9951 132.2059 0025931 073.4582 286.9047 14.81909376225249
```