# Multiplicative group of integers modulo n

It is a straightforward exercise to show that, under multiplication, the set of congruence classes modulo n that are coprime to n satisfy the axioms for an abelian group.

Indeed, a is coprime to n if and only if gcd(a, n) = 1. Integers in the same congruence class ab (mod n) satisfy gcd(a, n) = gcd(b, n), hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined.

Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under multiplication.

Integer multiplication respects the congruence classes, that is, aa' and bb' (mod n) implies aba'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity.

Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ 1 (mod n). It exists precisely when a is coprime to n, because in that case gcd(a, n) = 1 and by Bézout's lemma there are integers x and y satisfying ax + ny = 1. Notice that the equation ax + ny = 1 implies that x is coprime to n, so the multiplicative inverse belongs to the group.

If n is composite, there exists a subgroup of the multiplicative group, called the "group of false witnesses", in which the elements, when raised to the power n − 1, are congruent to 1 modulo n. (Because the residue 1 when raised to any power is congruent to 1 modulo n, the set of such elements is nonempty.)[8] One could say, because of Fermat's Little Theorem, that such residues are "false positives" or "false witnesses" for the primality of n. The number 2 is the residue most often used in this basic primality check, hence 341 = 11 × 31 is famous since 2340 is congruent to 1 modulo 341, and 341 is the smallest such composite number (with respect to 2). For 341, the false witnesses subgroup contains 100 residues and so is of index 3 inside the 300 element multiplicative group mod 341.

n = 561 (= 3 × 11 × 17) is a Carmichael number, thus s560 is congruent to 1 modulo 561 for any integer s coprime to 561. The subgroup of false witnesses is, in this case, not proper; it is the entire group of multiplicative units modulo 561, which consists of 320 residues.

0, 1, 2, 3, 2, 5, 3, 0, 2, 3, 2, 0, 2, 3, 0, 0, 3, 5, 2, 0, 0, 7, 5, 0, 2, 7, 2, 0, 2, 0, 3, 0, 0, 3, 0, 0, 2, 3, 0, 0, 6, 0, 3, 0, 0, 5, 5, 0, 3, 3, 0, 0, 2, 5, 0, 0, 0, 3, 2, 0, 2, 3, 0, 0, 0, 0, 2, 0, 0, 0, 7, 0, 5, 5, 0, 0, 0, 0, 3, 0, 2, 7, 2, 0, 0, 3, 0, 0, 3, 0, ... (sequence in the OEIS)
0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 2, ... (sequence in the OEIS)

The Disquisitiones Arithmeticae has been translated from Gauss's Ciceronian Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.