# Monoidal category

that is associative up to a natural isomorphism, and an object *I* that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute.

The ordinary tensor product makes vector spaces, abelian groups, *R*-modules, or *R*-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product.

In category theory, monoidal categories can be used to define the concept of a monoid object and an associated action on the objects of the category. They are also used in the definition of an enriched category.

Monoidal categories have numerous applications outside of category theory proper. They are used to define models for the multiplicative fragment of intuitionistic linear logic. They also form the mathematical foundation for the topological order in condensed matter physics. Braided monoidal categories have applications in quantum information, quantum field theory, and string theory.

A **strict monoidal category** is one for which the natural isomorphisms *α*, *λ* and *ρ* are identities. Every monoidal category is monoidally equivalent to a strict monoidal category.

Moving forward, suppose we want to add a monoidal structure to the preorder **C**. To do so means we must choose

Furthermore, the fact that · is required to be a functor means—in the present case, where **C** is a preorder—nothing more than the following:

The additional coherence conditions for monoidal categories are vacuous in this case because every diagram commutes in a preorder.

There is a general notion of monoid object in a monoidal category, which generalizes the ordinary notion of monoid from abstract algebra. Ordinary monoids are precisely the monoid objects in the cartesian monoidal category **Set**. Further, any (small) strict monoidal category can be seen as a monoid object in the category of categories **Cat** (equipped with the monoidal structure induced by the cartesian product).

Monoidal functors are the functors between monoidal categories that preserve the tensor product and monoidal natural transformations are the natural transformations, between those functors, which are "compatible" with the tensor product.

Every monoidal category can be seen as the category **B**(∗, ∗) of a bicategory **B** with only one object, denoted ∗.

The concept of a category **C** enriched in a monoidal category **M** replaces the notion of a set of morphisms between pairs of objects in **C** with the notion of an **M**-object of morphisms between every two objects in **C**.

For every category **C**, the free strict monoidal category Σ(**C**) can be constructed as follows:

This operation Σ mapping category **C** to Σ(**C**) can be extended to a strict 2-monad on **Cat**.