Meiosis

Type of cell division in sexually-reproducing organisms used to produce gametes

Although the process of meiosis is related to the more general cell division process of mitosis, it differs in two important respects:

We propose to apply the terms Maiosis or Maiotic phase to cover the whole series of nuclear changes included in the two divisions that were designated as Heterotype and Homotype by Flemming

Interphase is followed by meiosis I and then meiosis II. Meiosis I separates replicated homologous chromosomes, each still made up of two sister chromatids, into two daughter cells, thus reducing the chromosome number by half. During meiosis II, sister chromatids decouple and the resultant daughter chromosomes are segregated into four daughter cells. For diploid organisms, the daughter cells resulting from meiosis are haploid and contain only one copy of each chromosome. In some species, cells enter a resting phase known as interkinesis between meiosis I and meiosis II.

Meiosis Prophase I in mice. In Leptotene (L) the axial elements (stained by SYCP3) begin to form. In Zygotene (Z) the transverse elements (SYCP1) and central elements of the synaptonemal complex are partially installed (appearing as yellow as they overlap with SYCP3). In Pachytene (P) it's fully installed except on the sex chromosomes. In Diplotene (D) it disassembles revealing chiasmata. CREST marks the centromeres.
Schematic of the synaptonemal complex at different stages of prophase I and the chromosomes arranged as a linear array of loops.

Cells may enter a period of rest known as interkinesis or interphase II. No DNA replication occurs during this stage.

Meiosis II is the second meiotic division, and usually involves equational segregation, or separation of sister chromatids. Mechanically, the process is similar to mitosis, though its genetic results are fundamentally different. The end result is production of four haploid cells (n chromosomes, 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) produced in meiosis I. The four main steps of meiosis II are: prophase II, metaphase II, anaphase II, and telophase II.

The process ends with telophase II, which is similar to telophase I, and is marked by decondensation and lengthening of the chromosomes and the disassembly of the spindle. Nuclear envelopes re-form and cleavage or cell plate formation eventually produces a total of four daughter cells, each with a haploid set of chromosomes.

Overview of chromatides' and chromosomes' distribution within the mitotic and meiotic cycle of a male human cell

Most monosomic and trisomic human embryos are not viable, but some aneuploidies can be tolerated, such as trisomy for the smallest chromosome, chromosome 21. Phenotypes of these aneuploidies range from severe developmental disorders to asymptomatic. Medical conditions include but are not limited to: