Measure (mathematics)

Measure is a fundamental concept of mathematics. Measures provide a mathematical abstraction for common notions like mass, distance/length, area, volume, probability of events, and — after some adjustmentselectrical charge. These seemingly distinct concepts are innately very similar and may, in many cases, be treated as mathematically indistinguishable. Measures are foundational in probability theory. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Johann Radon, Constantin Carathéodory, and Maurice Fréchet, among others.

Countable additivity of a measure μ: The measure of a countable disjoint union is the same as the sum of all measures of each subset.

Let X be a set and Σ a σ-algebra over X. A function μ from Σ to the extended real number line is called a measure if it satisfies the following properties:

If the condition of non-negativity is omitted but the second and third of these conditions are met, and μ takes on at most one of the values ±∞, then μ is called a signed measure.

A triple (X, Σ, μ) is called a measure space. A probability measure is a measure with total measure one – i.e. μ(X) = 1. A probability space is a measure space with a probability measure.

For measure spaces that are also topological spaces various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in analysis (and in many cases also in probability theory) are Radon measures. Radon measures have an alternative definition in terms of linear functionals on the locally convex space of continuous functions with compact support. This approach is taken by Bourbaki (2004) and a number of other sources. For more details, see the article on Radon measures.

Other 'named' measures used in various theories include: Borel measure, Jordan measure, ergodic measure, Euler measure, Gaussian measure, Baire measure, Radon measure, Young measure, and Loeb measure.

In physics an example of a measure is spatial distribution of mass (see e.g., gravity potential), or another non-negative extensive property, conserved (see conservation law for a list of these) or not. Negative values lead to signed measures, see "generalizations" below.

For any countable sequence E1, E2, E3, ... of (not necessarily disjoint) measurable sets En in Σ:

This property is false without the assumption that at least one of the En has finite measure. For instance, for each nN, let En = [n, ∞) ⊂ R, which all have infinite Lebesgue measure, but the intersection is empty.

A measurable set X is called a null set if μ(X) = 0. A subset of a null set is called a negligible set. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called complete if every negligible set is measurable.

A measure can be extended to a complete one by considering the σ-algebra of subsets Y which differ by a negligible set from a measurable set X, that is, such that the symmetric difference of X and Y is contained in a null set. One defines μ(Y) to equal μ(X).

For example, the real numbers with the standard Lebesgue measure are σ-finite but not finite. Consider the closed intervals [k, k+1] for all integers k; there are countably many such intervals, each has measure 1, and their union is the entire real line. Alternatively, consider the real numbers with the counting measure, which assigns to each finite set of reals the number of points in the set. This measure space is not σ-finite, because every set with finite measure contains only finitely many points, and it would take uncountably many such sets to cover the entire real line. The σ-finite measure spaces have some very convenient properties; σ-finiteness can be compared in this respect to the Lindelöf property of topological spaces. They can be also thought of as a vague generalization of the idea that a measure space may have 'uncountable measure'.

A measure is said to be s-finite if it is a countable sum of bounded measures. S-finite measures are more general than sigma-finite ones and have applications in the theory of stochastic processes.

If the axiom of choice is assumed to be true, it can be proved that not all subsets of Euclidean space are Lebesgue measurable; examples of such sets include the Vitali set, and the non-measurable sets postulated by the Hausdorff paradox and the Banach–Tarski paradox.

For certain purposes, it is useful to have a "measure" whose values are not restricted to the non-negative reals or infinity. For instance, a countably additive set function with values in the (signed) real numbers is called a signed measure, while such a function with values in the complex numbers is called a complex measure. Measures that take values in Banach spaces have been studied extensively.[2] A measure that takes values in the set of self-adjoint projections on a Hilbert space is called a projection-valued measure; these are used in functional analysis for the spectral theorem. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used. Positive measures are closed under conical combination but not general linear combination, while signed measures are the linear closure of positive measures.

Another generalization is the finitely additive measure, also known as a content. This is the same as a measure except that instead of requiring countable additivity we require only finite additivity. Historically, this definition was used first. It turns out that in general, finitely additive measures are connected with notions such as Banach limits, the dual of L and the Stone–Čech compactification. All these are linked in one way or another to the axiom of choice. Contents remain useful in certain technical problems in geometric measure theory; this is the theory of Banach measures.

A charge is a generalization in both directions: it is a finitely additive, signed measure.