Maclaurin spheroid

A Maclaurin spheroid is an oblate spheroid which arises when a self-gravitating fluid body of uniform density rotates with a constant angular velocity. This spheroid is named after the Scottish mathematician Colin Maclaurin, who formulated it for the shape of Earth in 1742.[1] In fact the figure of the Earth is far less oblate than Maclaurin's formula suggests, since the Earth is not homogeneous, but has a dense iron core. The Maclaurin spheroid is considered to be the simplest model of rotating ellipsoidal figures in hydrostatic equilibrium since it assumes uniform density.

For a Maclaurin spheroid of eccentricity greater than 0.812670,[3] a Jacobi ellipsoid of the same angular momentum has lower total energy. If such a spheroid is composed of a viscous fluid, and if it suffers a perturbation which breaks its rotational symmetry, then it will gradually elongate into the Jacobi ellipsoidal form, while dissipating its excess energy as heat. This is termed secular instability. However, for a similar spheroid composed of an inviscid fluid, the perturbation will merely result in an undamped oscillation. This is described as dynamic (or ordinary) stability.

A Maclaurin spheroid of eccentricity greater than 0.952887[3] is dynamically unstable. Even if it is composed of an inviscid fluid and has no means of losing energy, a suitable perturbation will grow (at least initially) exponentially. Dynamic instability implies secular instability (and secular stability implies dynamic stability).[4]