# Uniform convergence

In 1821 Augustin-Louis Cauchy published a proof that a convergent sum of continuous functions is always continuous, to which Niels Henrik Abel in 1826 found purported counterexamples in the context of Fourier series, arguing that Cauchy's proof had to be incorrect. Completely standard notions of convergence did not exist at the time, and Cauchy handled convergence using infinitesimal methods. When put into the modern language, what Cauchy proved is that a uniformly convergent sequence of continuous functions has a continuous limit. The failure of a merely pointwise-convergent limit of continuous functions to converge to a continuous function illustrates the importance of distinguishing between different types of convergence when handling sequences of functions.^{[1]}

Later Gudermann's pupil Karl Weierstrass, who attended his course on elliptic functions in 1839–1840, coined the term *gleichmäßig konvergent* (German: *uniformly convergent*) which he used in his 1841 paper *Zur Theorie der Potenzreihen*, published in 1894. Independently, similar concepts were articulated by Philipp Ludwig von Seidel^{[3]} and George Gabriel Stokes. G. H. Hardy compares the three definitions in his paper "Sir George Stokes and the concept of uniform convergence" and remarks: "Weierstrass's discovery was the earliest, and he alone fully realized its far-reaching importance as one of the fundamental ideas of analysis."

Under the influence of Weierstrass and Bernhard Riemann this concept and related questions were intensely studied at the end of the 19th century by Hermann Hankel, Paul du Bois-Reymond, Ulisse Dini, Cesare Arzelà and others.

We first define uniform convergence for real-valued functions, although the concept is readily generalized to functions mapping to metric spaces and, more generally, uniform spaces (see below).

Given a topological space *X*, we can equip the space of bounded real or complex-valued functions over *X* with the uniform norm topology, with the uniform metric defined by

Then uniform convergence simply means convergence in the uniform norm topology:

This theorem is proved by the "ε/3 trick", and is the archetypal example of this trick: to prove a given inequality (ε), one uses the definitions of continuity and uniform convergence to produce 3 inequalities (ε/3), and then combines them via the triangle inequality to produce the desired inequality.

This theorem is an important one in the history of real and Fourier analysis, since many 18th century mathematicians had the intuitive understanding that a sequence of continuous functions always converges to a continuous function. The image above shows a counterexample, and many discontinuous functions could, in fact, be written as a Fourier series of continuous functions. The erroneous claim that the pointwise limit of a sequence of continuous functions is continuous (originally stated in terms of convergent series of continuous functions) is infamously known as "Cauchy's wrong theorem". The uniform limit theorem shows that a stronger form of convergence, uniform convergence, is needed to ensure the preservation of continuity in the limit function.

More precisely, this theorem states that the uniform limit of *uniformly continuous* functions is uniformly continuous; for a locally compact space, continuity is equivalent to local uniform continuity, and thus the uniform limit of continuous functions is continuous.

Similarly, one often wants to exchange integrals and limit processes. For the Riemann integral, this can be done if uniform convergence is assumed:

Much stronger theorems in this respect, which require not much more than pointwise convergence, can be obtained if one abandons the Riemann integral and uses the Lebesgue integral instead.

Using Morera's Theorem, one can show that if a sequence of analytic functions converges uniformly in a region S of the complex plane, then the limit is analytic in S. This example demonstrates that complex functions are more well-behaved than real functions, since the uniform limit of analytic functions on a real interval need not even be differentiable (see Weierstrass function).

Note that almost uniform convergence of a sequence does not mean that the sequence converges uniformly almost everywhere as might be inferred from the name. However, Egorov's theorem does guarantee that on a finite measure space, a sequence of functions that converges almost everywhere also converges almost uniformly on the same set.

Almost uniform convergence implies almost everywhere convergence and convergence in measure.