# Krull dimension

In commutative algebra, the **Krull dimension** of a commutative ring *R*, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal *I* in a polynomial ring *R* is the Krull dimension of *R*/*I*.

A field *k* has Krull dimension 0; more generally, *k*[*x*_{1}, ..., *x*_{n}] has Krull dimension *n*. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent.

There are several other ways that have been used to define the dimension of a ring. Most of them coincide with the Krull dimension for Noetherian rings, but can differ for non-Noetherian rings.

In a Noetherian ring, a prime ideal has height at most *n* if and only if it is a minimal prime ideal over an ideal generated by *n* elements (Krull's height theorem and its converse).^{[4]} It implies that the descending chain condition holds for prime ideals in such a way the lengths of the chains descending from a prime ideal are bounded by the number of generators of the prime.^{[5]}

If *R* is a commutative ring, and *M* is an *R*-module, we define the Krull dimension of *M* to be the Krull dimension of the quotient of *R* making *M* a faithful module. That is, we define it by the formula:

where Ann_{R}(*M*), the annihilator, is the kernel of the natural map R → End_{R}(M) of *R* into the ring of *R*-linear endomorphisms of *M*.

In the language of schemes, finitely generated modules are interpreted as coherent sheaves, or generalized finite rank vector bundles.

The Krull dimension of a module over a possibly non-commutative ring is defined as the deviation of the poset of submodules ordered by inclusion. For commutative Noetherian rings, this is the same as the definition using chains of prime ideals.^{[10]} The two definitions can be different for commutative rings which are not Noetherian.