# Series (mathematics)

In mathematics, a **series** is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity.^{[1]} The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginning of the race, the tortoise has reached a second position; when he reaches this second position, the tortoise is at a third position, and so on. Zeno concluded that Achilles could *never* reach the tortoise, and thus that movement does not exist. Zeno divided the race into infinitely many sub-races, each requiring a finite amount of time, so that the total time for Achilles to catch the tortoise is given by a series. The resolution of the paradox is that, although the series has an infinite number of terms, it has a finite sum, which gives the time necessary for Achilles to catch up with the tortoise.

The infinite sequence of additions implied by a series cannot be effectively carried on (at least in a finite amount of time). However, if the set to which the terms and their finite sums belong has a notion of limit, it is sometimes possible to assign a value to a series, called the sum of the series. This value is the limit as *n* tends to infinity (if the limit exists) of the finite sums of the *n* first terms of the series, which are called the *n*th **partial sums** of the series. That is,

An infinite series or simply a series is an infinite sum, represented by an infinite expression of the form^{[3]}

A series Σ*a*_{n} is said to converge or to *be convergent* when the sequence (*s*_{k}) of partial sums has a finite limit. If the limit of *s*_{k} is infinite or does not exist, the series is said to diverge.^{[4]}^{[2]} When the limit of partial sums exists, it is called the value (or sum) of the series

An easy way that an infinite series can converge is if all the *a*_{n} are zero for *n* sufficiently large. Such a series can be identified with a finite sum, so it is only infinite in a trivial sense.

Working out the properties of the series that converge, even if infinitely many terms are nonzero, is the essence of the study of series. Consider the example

The idiom can be extended to other, equivalent notions of series. For instance, a recurring decimal, as in

Since these series always converge to real numbers (because of what is called the completeness property of the real numbers), to talk about the series in this way is the same as to talk about the numbers for which they stand. In particular, the decimal expansion 0.111... can be identified with 1/9. This leads to an argument that 9 × 0.111... = 0.999... = 1, which only relies on the fact that the limit laws for series preserve the arithmetic operations; for more detail on this argument, see 0.999....

Series are classified not only by whether they converge or diverge, but also by the properties of the terms a_{n} (absolute or conditional convergence); type of convergence of the series (pointwise, uniform); the class of the term a_{n} (whether it is a real number, arithmetic progression, trigonometric function); etc.

When *a _{n}* is a non-negative real number for every

*n*, the sequence

*S*of partial sums is non-decreasing. It follows that a series Σ

_{N}*a*with non-negative terms converges if and only if the sequence

_{n}*S*of partial sums is bounded.

_{N}A series of real or complex numbers is said to be **conditionally convergent** (or **semi-convergent**) if it is convergent but not absolutely convergent. A famous example is the alternating series

Abel's test is an important tool for handling semi-convergent series. If a series has the form

The evaluation of truncation errors is an important procedure in numerical analysis (especially validated numerics and computer-assisted proof).

Taylor's theorem is a statement that includes the evaluation of the error term when the Taylor series is truncated.

By using the ratio, we can obtain the evaluation of the error term when the hypergeometric series is truncated.^{[10]}

There exist many tests that can be used to determine whether particular series converge or diverge.

converges pointwise on a set *E*, if the series converges for each *x* in *E* as an ordinary series of real or complex numbers. Equivalently, the partial sums

A stronger notion of convergence of a series of functions is the uniform convergence. A series converges uniformly if it converges pointwise to the function *ƒ*(*x*), and the error in approximating the limit by the *N*th partial sum,

Uniform convergence is desirable for a series because many properties of the terms of the series are then retained by the limit. For example, if a series of continuous functions converges uniformly, then the limit function is also continuous. Similarly, if the *ƒ*_{n} are integrable on a closed and bounded interval *I* and converge uniformly, then the series is also integrable on *I* and can be integrated term-by-term. Tests for uniform convergence include the Weierstrass' M-test, Abel's uniform convergence test, Dini's test, and the Cauchy criterion.

More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a certain set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration. For instance, a series of functions **converges in mean** on a set *E* to a limit function *ƒ* provided

The Taylor series at a point *c* of a function is a power series that, in many cases, converges to the function in a neighborhood of *c*. For example, the series

Unless it converges only at *x*=*c*, such a series converges on a certain open disc of convergence centered at the point *c* in the complex plane, and may also converge at some of the points of the boundary of the disc. The radius of this disc is known as the radius of convergence, and can in principle be determined from the asymptotics of the coefficients *a*_{n}. The convergence is uniform on closed and bounded (that is, compact) subsets of the interior of the disc of convergence: to wit, it is uniformly convergent on compact sets.

Historically, mathematicians such as Leonhard Euler operated liberally with infinite series, even if they were not convergent. When calculus was put on a sound and correct foundation in the nineteenth century, rigorous proofs of the convergence of series were always required.

While many uses of power series refer to their sums, it is also possible to treat power series as *formal sums*, meaning that no addition operations are actually performed, and the symbol "+" is an abstract symbol of conjunction which is not necessarily interpreted as corresponding to addition. In this setting, the sequence of coefficients itself is of interest, rather than the convergence of the series. Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle, for example, using the method of generating functions. The Hilbert–Poincaré series is a formal power series used to study graded algebras.

Even if the limit of the power series is not considered, if the terms support appropriate structure then it is possible to define operations such as addition, multiplication, derivative, antiderivative for power series "formally", treating the symbol "+" as if it corresponded to addition. In the most common setting, the terms come from a commutative ring, so that the formal power series can be added term-by-term and multiplied via the Cauchy product. In this case the algebra of formal power series is the total algebra of the monoid of natural numbers over the underlying term ring.^{[14]} If the underlying term ring is a differential algebra, then the algebra of formal power series is also a differential algebra, with differentiation performed term-by-term.

Laurent series generalize power series by admitting terms into the series with negative as well as positive exponents. A Laurent series is thus any series of the form

A series of functions in which the terms are trigonometric functions is called a **trigonometric series**:

Greek mathematician Archimedes produced the first known summation of an infinite series with a
method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave a remarkably accurate approximation of π.^{[15]}^{[16]}

Mathematicians from Kerala, India studied infinite series around 1350 CE.^{[17]}

In the 17th century, James Gregory worked in the new decimal system on infinite series and published several Maclaurin series. In 1715, a general method for constructing the Taylor series for all functions for which they exist was provided by Brook Taylor. Leonhard Euler in the 18th century, developed the theory of hypergeometric series and q-series.

The investigation of the validity of infinite series is considered to begin with Gauss in the 19th century. Euler had already considered the hypergeometric series

Cauchy (1821) insisted on strict tests of convergence; he showed that if two series are convergent their product is not necessarily so, and with him begins the discovery of effective criteria. The terms *convergence* and *divergence* had been introduced long before by Gregory (1668). Leonhard Euler and Gauss had given various criteria, and Colin Maclaurin had anticipated some of Cauchy's discoveries. Cauchy advanced the theory of power series by his expansion of a complex function in such a form.

Cauchy's methods led to special rather than general criteria, and the same may be said of Raabe (1832), who made the first elaborate investigation of the subject, of De Morgan (from 1842), whose logarithmic test DuBois-Reymond (1873) and Pringsheim (1889) have shown to fail within a certain region; of Bertrand (1842), Bonnet (1843), Malmsten (1846, 1847, the latter without integration); Stokes (1847), Paucker (1852), Chebyshev (1852), and Arndt (1853).

General criteria began with Kummer (1835), and have been studied by Eisenstein (1847), Weierstrass in his various contributions to the theory of functions, Dini (1867), DuBois-Reymond (1873), and many others. Pringsheim's memoirs (1889) present the most complete general theory.

The theory of uniform convergence was treated by Cauchy (1821), his limitations being pointed out by Abel, but the first to attack it successfully were Seidel and Stokes (1847–48). Cauchy took up the problem again (1853), acknowledging Abel's criticism, and reaching the same conclusions which Stokes had already found. Thomae used the doctrine (1866), but there was great delay in recognizing the importance of distinguishing between uniform and non-uniform convergence, in spite of the demands of the theory of functions.

A series is said to be semi-convergent (or conditionally convergent) if it is convergent but not absolutely convergent.

Semi-convergent series were studied by Poisson (1823), who also gave a general form for the remainder of the Maclaurin formula. The most important solution of the problem is due, however, to Jacobi (1834), who attacked the question of the remainder from a different standpoint and reached a different formula. This expression was also worked out, and another one given, by Malmsten (1847). Schlömilch (*Zeitschrift*, Vol.I, p. 192, 1856) also improved Jacobi's remainder, and showed the relation between the remainder and Bernoulli's function

Among the early writers was Wronski, whose "loi suprême" (1815) was hardly recognized until Cayley (1873) brought it into prominence.

Fourier series were being investigated as the result of physical considerations at the same time that Gauss, Abel, and Cauchy were working out the theory of infinite series. Series for the expansion of sines and cosines, of multiple arcs in powers of the sine and cosine of the arc had been treated by Jacob Bernoulli (1702) and his brother Johann Bernoulli (1701) and still earlier by Vieta. Euler and Lagrange simplified the subject, as did Poinsot, Schröter, Glaisher, and Kummer.

Fourier (1807) set for himself a different problem, to
expand a given function of *x* in terms of the sines or cosines of
multiples of *x*, a problem which he embodied in his *Théorie analytique de la chaleur* (1822). Euler had already given the formulas for determining the coefficients in the series;
Fourier was the first to assert and attempt to prove the general
theorem. Poisson (1820–23) also attacked the problem from a
different standpoint. Fourier did not, however, settle the question
of convergence of his series, a matter left for Cauchy (1826) to
attempt and for Dirichlet (1829) to handle in a thoroughly
scientific manner (see convergence of Fourier series). Dirichlet's treatment (*Crelle*, 1829), of trigonometric series was the subject of criticism and improvement by
Riemann (1854), Heine, Lipschitz, Schläfli, and
du Bois-Reymond. Among other prominent contributors to the theory of
trigonometric and Fourier series were Dini, Hermite, Halphen,
Krause, Byerly and Appell.

Asymptotic series, otherwise asymptotic expansions, are infinite series whose partial sums become good approximations in the limit of some point of the domain. In general they do not converge, but they are useful as sequences of approximations, each of which provides a value close to the desired answer for a finite number of terms. The difference is that an asymptotic series cannot be made to produce an answer as exact as desired, the way that convergent series can. In fact, after a certain number of terms, a typical asymptotic series reaches its best approximation; if more terms are included, most such series will produce worse answers.

Under many circumstances, it is desirable to assign a limit to a series which fails to converge in the usual sense. A summability method is such an assignment of a limit to a subset of the set of divergent series which properly extends the classical notion of convergence. Summability methods include Cesàro summation, (*C*,*k*) summation, Abel summation, and Borel summation, in increasing order of generality (and hence applicable to increasingly divergent series).

A variety of general results concerning possible summability methods are known. The Silverman–Toeplitz theorem characterizes *matrix summability methods*, which are methods for summing a divergent series by applying an infinite matrix to the vector of coefficients. The most general method for summing a divergent series is non-constructive, and concerns Banach limits.

Any sum over non-negative reals can be understood as the integral of a non-negative function with respect to the counting measure, which accounts for the many similarities between the two constructions.

Summable families play an important role in the theory of nuclear spaces.

If a countable series of vectors in a Banach space converges absolutely then it converges unconditionally, but the converse only holds in finite-dimensional Banach spaces (theorem of Dvoretzky & Rogers (1950)).