# Homotopy theory

In mathematics, **homotopy theory** is a systematic study of situations in which maps come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A^{1} homotopy theory) and category theory (specifically the study of higher categories).

In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated, or Hausdorff, or a CW complex.

In the same vein as above, a "map" is a continuous function, possibly with some extra constraints.

Often, one works with a pointed space -- that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserves basepoints; that is, it sends the basepoint of the domain to that of the codomain. In contrast, a free map is one which needn't preserve basepoints.

If one prefers to work with a space instead of a pointed space, there is the notion of a fundamental groupoid (and higher variants): by definition, the fundamental groupoid of a space *X* is the category where the objects are the points of *X* and the morphisms are paths.

Brown's representability theorem guarantees the existence of classifying spaces.

One of the basic questions in the foundations of homotopy theory is the nature of a space. The homotopy hypothesis asks whether a space is something fundamentally algebraic.