Group cohomology

A great deal is known about the cohomology of groups, including interpretations of low-dimensional cohomology, functoriality, and how to change groups. The subject of group cohomology began in the 1920s, matured in the late 1940s, and continues as an area of active research today.

A general paradigm in group theory is that a group G should be studied via its group representations. A slight generalization of those representations are the G-modules: a G-module is an abelian group M together with a group action of G on M, with every element of G acting as an automorphism of M. We will write G multiplicatively and M additively.

Given such a G-module M, it is natural to consider the submodule of G-invariant elements:

Here the groups of n-cocycles, and n-coboundaries, respectively, are defined as

Therefore, as Ext functors are the derived functors of Hom, there is a natural isomorphism

Dually to the construction of group cohomology there is the following definition of group homology: given a G-module M, set DM to be the submodule generated by elements of the form g·m − m, g ∈ G, m ∈ M. Assigning to M its so-called coinvariants, the quotient

is a right exact functor. Its left derived functors are by definition the group homology

Note that the superscript/subscript convention for cohomology/homology agrees with the convention for group invariants/coinvariants, while which is denoted "co-" switches:

Group homology and cohomology can be treated uniformly for some groups, especially finite groups, in terms of complete resolutions and the Tate cohomology groups.

The first cohomology group is the quotient of the so-called crossed homomorphisms, i.e. maps (of sets) f : GM satisfying f(ab) = f(a) + af(b) for all a, b in G, modulo the so-called principal crossed homomorphisms, i.e. maps f : GM given by f(a) = amm for some fixed mM. This follows from the definition of cochains above.

If the action of G on M is trivial, then the above boils down to H1(G,M) = Hom(G, M), the group of group homomorphisms GM.

An example of a second group cohomology group is the Brauer group: it is the cohomology of the absolute Galois group of a field k which acts on the invertible elements in a separable closure:

This resolution gives a computation of the group cohomology since there is the isomorphism of cohomology groups

In addition, it has the property that its topological cohomology is isomorphic to group cohomology

In practice, one often computes the cohomology groups using the following fact: if

is a short exact sequence of G-modules, then a long exact sequence is induced:

Group cohomology depends contravariantly on the group G, in the following sense: if f : HG is a group homomorphism, then we have a naturally induced morphism Hn(G, M) → Hn(H, M) (where in the latter, M is treated as an H-module via f). This map is called the restriction map. If the index of H in G is finite, there is also a map in the opposite direction, called transfer map,[8]

Given a morphism of G-modules MN, one gets a morphism of cohomology groups in the Hn(G, M) → Hn(G, N).

Similarly to other cohomology theories in topology and geometry, such as singular cohomology or de Rham cohomology, group cohomology enjoys a product structure: there is a natural map called cup product:

If, M = k is a field, then H*(G; k) is a graded k-algebra and the cohomology of a product of groups is related to the ones of the individual groups by a Künneth formula:

As for other cohomology theories, such as singular cohomology, group cohomology and homology are related to one another by means of a short exact sequence[10]

where A is endowed with the trivial G-action and the term at the left is the first Ext group.

The Hochschild–Serre spectral sequence relates the cohomology of a normal subgroup N of G and the quotient G/N to the cohomology of the group G (for (pro-)finite groups G). From it, one gets the inflation-restriction exact sequence.

Group cohomology is closely related to topological cohomology theories such as sheaf cohomology, by means of an isomorphism[12]

Using the associated Eilenberg-Maclane spaces there is a Serre fibration

The cohomology groups Hn(G, M) of finite groups G are all torsion for all n≥1. Indeed, by Maschke's theorem the category of representations of a finite group is semi-simple over any field of characteristic zero (or more generally, any field whose characteristic does not divide the order of the group), hence, viewing group cohomology as a derived functor in this abelian category, one obtains that it is zero. The other argument is that over a field of characteristic zero, the group algebra of a finite group is a direct sum of matrix algebras (possibly over division algebras which are extensions of the original field), while a matrix algebra is Morita equivalent to its base field and hence has trivial cohomology.

Tate cohomology groups combine both homology and cohomology of a finite group G:

Tate cohomology enjoys similar features, such as long exact sequences, product structures. An important application is in class field theory, see class formation.

Given a topological group G, i.e., a group equipped with a topology such that product and inverse are continuous maps, it is natural to consider continuous G-modules, i.e., requiring that the action

Using the G-invariants and the 1-cochains, one can construct the zeroth and first group cohomology for a group G with coefficients in a non-abelian group. Specifically, a G-group is a (not necessarily abelian) group A together with an action by G.

The zeroth cohomology of G with coefficients in A is defined to be the subgroup

Using explicit calculations, one still obtains a truncated long exact sequence in cohomology. Specifically, let

be a short exact sequence of G-groups, then there is an exact sequence of pointed sets

Hopf's result led to the independent discovery of group cohomology by several groups in 1943-45: Samuel Eilenberg and Saunders Mac Lane in the United States (Rotman 1995, p. 358); Hopf and Beno Eckmann in Switzerland; and Hans Freudenthal in the Netherlands (Weibel 1999, p. 807). The situation was chaotic because communication between these countries was difficult during World War II.

From a topological point of view, the homology and cohomology of G was first defined as the homology and cohomology of a model for the topological classifying space BG as discussed above. In practice, this meant using topology to produce the chain complexes used in formal algebraic definitions. From a module-theoretic point of view this was integrated into the CartanEilenberg theory of homological algebra in the early 1950s.

The application in algebraic number theory to class field theory provided theorems valid for general Galois extensions (not just abelian extensions). The cohomological part of class field theory was axiomatized as the theory of class formations. In turn, this led to the notion of Galois cohomology and étale cohomology (which builds on it) (Weibel 1999, p. 822). Some refinements in the theory post-1960 have been made, such as continuous cocycles and John Tate's redefinition, but the basic outlines remain the same. This is a large field, and now basic in the theories of algebraic groups.

The analogous theory for Lie algebras, called Lie algebra cohomology, was first developed in the late 1940s, by Claude Chevalley and Eilenberg, and Jean-Louis Koszul (Weibel 1999, p. 810). It is formally similar, using the corresponding definition of invariant for the action of a Lie algebra. It is much applied in representation theory, and is closely connected with the BRST quantization of theoretical physics.

Group cohomology theory also has a direct application in condensed matter physics. Just like group theory being the mathematical foundation of spontaneous symmetry breaking phases, group cohomology theory is the mathematical foundation of a class of quantum states of matter—short-range entangled states with symmetry. Short-range entangled states with symmetry are also known as symmetry-protected topological states.[17] [18]