Graph rewriting

Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph. Such rules consist of an original graph, which is to be matched to a subgraph in the complete state, and a replacing graph, which will replace the matched subgraph.

From the practical perspective, the key distinction between DPO and SPO is how they deal with the deletion of nodes with adjacent edges, in particular, how they avoid that such deletions may leave behind "dangling edges". The DPO approach only deletes a node when the rule specifies the deletion of all adjacent edges as well (this dangling condition can be checked for a given match), whereas the SPO approach simply disposes the adjacent edges, without requiring an explicit specification.

Graph rewriting systems naturally group into classes according to the kind of representation of graphs that are used and how the rewrites are expressed. The term graph grammar, otherwise equivalent to graph rewriting system or graph replacement system, is most often used in classifications. Some common types are:

Graphs are an expressive, visual and mathematically precise formalism for modelling of objects (entities) linked by relations; objects are represented by nodes and relations between them by edges. Nodes and edges are commonly typed and attributed. Computations are described in this model by changes in the relations between the entities or by attribute changes of the graph elements. They are encoded in graph rewrite/graph transformation rules and executed by graph rewrite systems/graph transformation tools.