# Goldstone boson

In particle and condensed matter physics, **Goldstone bosons** or **Nambu–Goldstone bosons** (**NGBs**) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism,^{[1]} and subsequently elucidated by Jeffrey Goldstone,^{[2]} and systematically generalized in the context of quantum field theory.^{[3]} In condensed matter physics such bosons are quasiparticles and are known as Anderson-Bogoliubov modes.^{[4]}^{[5]}^{[6]}

These spinless bosons correspond to the spontaneously broken internal symmetry generators, and are characterized by the quantum numbers of these. They transform nonlinearly (shift) under the action of these generators, and can thus be excited out of the asymmetric vacuum by these generators. Thus, they can be thought of as the excitations of the field in the broken symmetry directions in group space—and are massless if the spontaneously broken symmetry is not also broken explicitly.

If, instead, the symmetry is not exact, i.e. if it is explicitly broken as well as spontaneously broken, then the Nambu–Goldstone bosons are not massless, though they typically remain relatively light; they are then called **pseudo-Goldstone bosons** or **pseudo-Nambu–Goldstone bosons** (abbreviated **PNGBs**).

**Goldstone's theorem** examines a generic continuous symmetry which is spontaneously broken; i.e., its currents are conserved, but the ground state is not invariant under the action of the corresponding charges. Then, necessarily, new massless (or light, if the symmetry is not exact) scalar particles appear in the spectrum of possible excitations. There is one scalar particle—called a Nambu–Goldstone boson—for each generator of the symmetry that is broken, i.e., that does not preserve the ground state. The Nambu–Goldstone mode is a long-wavelength fluctuation of the corresponding order parameter.

By virtue of their special properties in coupling to the vacuum of the respective symmetry-broken theory, vanishing momentum ("soft") Goldstone bosons involved in field-theoretic amplitudes make such amplitudes vanish ("Adler zeros").

and taking the limit as *λ* → ∞. This is called the "Abelian nonlinear σ-model".^{[nb 2]}

The constraint, and the action, below, are invariant under a *U*(1) phase transformation, *δϕ*=i*εϕ*. The field can be redefined to give a real scalar field (i.e., a spin-zero particle) *θ* without any constraint by

but does not preserve the ground state |0〉 (i.e. the above infinitesimal transformation *does not annihilate it*—the hallmark of invariance), as evident in the charge of the current below.

Thus, the vacuum is degenerate and noninvariant under the action of the spontaneously broken symmetry.

The charge, *Q*, resulting from this current shifts *θ* and the ground state to a new, degenerate, ground state. Thus, a vacuum with 〈*θ*〉 = 0 will shift to a *different vacuum* with 〈*θ*〉 = *ε*. The current connects the original vacuum with the Nambu–Goldstone boson state, 〈0|*J*_{0}(0)|*θ*〉≠ 0.

In general, in a theory with several scalar fields, *ϕ*_{j}, the Nambu–Goldstone mode *ϕ*_{g} is massless, and parameterises the curve of possible (degenerate) vacuum states. Its hallmark under the broken symmetry transformation is *nonvanishing vacuum expectation* 〈*δϕ _{g}*〉, an order parameter, for vanishing 〈

*ϕ*〉 = 0, at some ground state |0〉 chosen at the minimum of the potential, 〈∂

_{g}*V*/∂

*ϕ*

_{i}〉 = 0. Symmetry dictates that all variations of the potential with respect to the fields in all symmetry directions vanish. The vacuum value of the first order variation in any direction vanishes as just seen; while the vacuum value of the second order variation must also vanish, as follows. Vanishing vacuum values of field symmetry transformation increments add no new information.

By contrast, however, *nonvanishing vacuum expectations of transformation increments*, 〈*δϕ*_{g}〉, specify the relevant (Goldstone) *null eigenvectors of the mass matrix*,

The principle behind Goldstone's argument is that the ground state is not unique. Normally, by current conservation, the charge operator for any symmetry current is time-independent,

Acting with the charge operator on the vacuum either *annihilates the vacuum*, if that is symmetric; else, if *not*, as is the case in spontaneous symmetry breaking, it produces a zero-frequency state out of it, through its shift transformation feature illustrated above. Actually, here, the charge itself is ill-defined, cf. the Fabri–Picasso argument below.

But its better behaved commutators with fields, that is, the nonvanishing transformation shifts 〈*δϕ*_{g}〉, are, nevertheless, *time-invariant*,

thus generating a δ(*k*^{0}) in its Fourier transform.^{[7]} (This ensures that, inserting a complete set of intermediate states in a nonvanishing current commutator can lead to vanishing time-evolution only when one or more of these states is massless.)

Thus, if the vacuum is not invariant under the symmetry, action of the charge operator produces a state which is different from the vacuum chosen, but which has zero frequency. This is a long-wavelength oscillation of a field which is nearly stationary: there are physical states with zero frequency, *k*^{0}, so that the theory cannot have a mass gap.

This argument is further clarified by taking the limit carefully. If an approximate charge operator acting in a huge but finite region A is applied to the vacuum,

Assuming a nonvanishing mass gap *m*_{0}, the frequency of any state like the above, which is orthogonal to the vacuum, is at least *m*_{0},

Letting A become large leads to a contradiction. Consequently m_{0} = 0. However this argument fails when the symmetry is gauged, because then the symmetry generator is only performing a gauge transformation. A gauge transformed state is the same exact state, so that acting with a symmetry generator does not get one out of the vacuum.^{[8]}

The argument^{[9]} requires both the vacuum and the charge Q to be translationally invariant, *P*|0〉 = 0, [*P,Q*]= 0.

so the integrand in the right hand side does not depend on the position.

There is an arguable loophole in the theorem. If one reads the theorem carefully, it only states that there exist non-vacuum states with arbitrarily small energies. Take for example a chiral `N` = 1 super QCD model with a nonzero squark VEV which is conformal in the IR. The chiral symmetry is a global symmetry which is (partially) spontaneously broken. Some of the "Goldstone bosons" associated with this spontaneous symmetry breaking are charged under the unbroken gauge group and hence, these composite bosons have a continuous mass spectrum with arbitrarily small masses but yet there is no Goldstone boson with exactly zero mass. In other words, the Goldstone bosons are infraparticles.

A version of Goldstone's theorem also applies to nonrelativistic theories (and also relativistic theories with spontaneously broken spacetime symmetries, such as Lorentz symmetry or conformal symmetry, rotational, or translational invariance).

It essentially states that, for each spontaneously broken symmetry, there corresponds some quasiparticle with no energy gap—the nonrelativistic version of the mass gap. (Note that the energy here is really *H*−*μN*−*α*→⋅*P*→ and not *H*.) However, two *different* spontaneously broken generators may now give rise to the *same* Nambu–Goldstone boson. For example, in a superfluid, both the *U(1)* particle number symmetry and Galilean symmetry are spontaneously broken. However, the phonon is the Goldstone boson for both.

In general, the phonon is effectively the Nambu–Goldstone boson for spontaneously broken Galilean/Lorentz symmetry. However, in contrast to the case of internal symmetry breaking, when spacetime symmetries are broken, the order parameter *need not* be a scalar field, but may be a tensor field, and the corresponding independent massless modes may now be *fewer* than the number of spontaneously broken generators, because the Goldstone modes may now be linearly dependent among themselves: e.g., the Goldstone modes for some generators might be expressed as gradients of Goldstone modes for other broken generators.

Spontaneously broken global fermionic symmetries, which occur in some supersymmetric models, lead to Nambu–Goldstone fermions, or *goldstinos*.^{[10]}^{[11]} These have spin ½, instead of 0, and carry all quantum numbers of the respective supersymmetry generators broken spontaneously.

Spontaneous supersymmetry breaking smashes up ("reduces") supermultiplet structures into the characteristic nonlinear realizations of broken supersymmetry, so that goldstinos are superpartners of *all* particles in the theory, of *any spin*, and the only superpartners, at that. That is, to say, two non-goldstino particles are connected to only goldstinos through supersymmetry transformations, and not to each other, even if they were so connected before the breaking of supersymmetry. As a result, the masses and spin multiplicities of such particles are then arbitrary.