General topology

The Topologist's sine curve, a useful example in point-set topology. It is connected but not path-connected.

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

The fundamental concepts in point-set topology are continuity, compactness, and connectedness:

The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a topology. A set with a topology is called a topological space.

Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.

General topology grew out of a number of areas, most importantly the following:

General topology assumed its present form around 1940. It captures, one might say, almost everything in the intuition of continuity, in a technically adequate form that can be applied in any area of mathematics.

Let X be a set and let τ be a family of subsets of X. Then τ is called a topology on X if:[1][2]

If τ is a topology on X, then the pair (X, τ) is called a topological space. The notation Xτ may be used to denote a set X endowed with the particular topology τ.

The members of τ are called open sets in X. A subset of X is said to be closed if its complement is in τ (i.e., its complement is open). A subset of X may be open, closed, both (clopen set), or neither. The empty set and X itself are always both closed and open.

A base (or basis) B for a topological space X with topology T is a collection of open sets in T such that every open set in T can be written as a union of elements of B.[3][4] We say that the base generates the topology T. Bases are useful because many properties of topologies can be reduced to statements about a base that generates that topology—and because many topologies are most easily defined in terms of a base that generates them.

Every subset of a topological space can be given the subspace topology in which the open sets are the intersections of the open sets of the larger space with the subset. For any indexed family of topological spaces, the product can be given the product topology, which is generated by the inverse images of open sets of the factors under the projection mappings. For example, in finite products, a basis for the product topology consists of all products of open sets. For infinite products, there is the additional requirement that in a basic open set, all but finitely many of its projections are the entire space.

A quotient space is defined as follows: if X is a topological space and Y is a set, and if f : XY is a surjective function, then the quotient topology on Y is the collection of subsets of Y that have open inverse images under f. In other words, the quotient topology is the finest topology on Y for which f is continuous. A common example of a quotient topology is when an equivalence relation is defined on the topological space X. The map f is then the natural projection onto the set of equivalence classes.

A given set may have many different topologies. If a set is given a different topology, it is viewed as a different topological space.

Any set can be given the discrete topology, in which every subset is open. The only convergent sequences or nets in this topology are those that are eventually constant. Also, any set can be given the trivial topology (also called the indiscrete topology), in which only the empty set and the whole space are open. Every sequence and net in this topology converges to every point of the space. This example shows that in general topological spaces, limits of sequences need not be unique. However, often topological spaces must be Hausdorff spaces where limit points are unique.

Any set can be given the cofinite topology in which the open sets are the empty set and the sets whose complement is finite. This is the smallest T1 topology on any infinite set.

Any set can be given the cocountable topology, in which a set is defined as open if it is either empty or its complement is countable. When the set is uncountable, this topology serves as a counterexample in many situations.

There are many ways to define a topology on R, the set of real numbers. The standard topology on R is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces Rn can be given a topology. In the usual topology on Rn the basic open sets are the open balls. Similarly, C, the set of complex numbers, and Cn have a standard topology in which the basic open sets are open balls.

The real line can also be given the lower limit topology. Here, the basic open sets are the half open intervals [a, b). This topology on R is strictly finer than the Euclidean topology defined above; a sequence converges to a point in this topology if and only if it converges from above in the Euclidean topology. This example shows that a set may have many distinct topologies defined on it.

Every metric space can be given a metric topology, in which the basic open sets are open balls defined by the metric. This is the standard topology on any normed vector space. On a finite-dimensional vector space this topology is the same for all norms.

Continuity is expressed in terms of neighborhoods: f is continuous at some point x ∈ X if and only if for any neighborhood V of f(x), there is a neighborhood U of x such that f(U) ⊆ V. Intuitively, continuity means no matter how "small" V becomes, there is always a U containing x that maps inside V and whose image under f contains f(x). This is equivalent to the condition that the preimages of the open (closed) sets in Y are open (closed) in X. In metric spaces, this definition is equivalent to the ε–δ-definition that is often used in analysis.

An extreme example: if a set X is given the discrete topology, all functions

to any topological space T are continuous. On the other hand, if X is equipped with the indiscrete topology and the space T set is at least T0, then the only continuous functions are the constant functions. Conversely, any function whose range is indiscrete is continuous.

Several equivalent definitions for a topological structure exist and thus there are several equivalent ways to define a continuous function.

Definitions based on preimages are often difficult to use directly. The following criterion expresses continuity in terms of neighborhoods: f is continuous at some point x ∈ X if and only if for any neighborhood V of f(x), there is a neighborhood U of x such that f(U) ⊆ V. Intuitively, continuity means no matter how "small" V becomes, there is always a U containing x that maps inside V.

If X and Y are metric spaces, it is equivalent to consider the neighborhood system of open balls centered at x and f(x) instead of all neighborhoods. This gives back the above δ-ε definition of continuity in the context of metric spaces. However, in general topological spaces, there is no notion of nearness or distance.

Note, however, that if the target space is Hausdorff, it is still true that f is continuous at a if and only if the limit of f as x approaches a is f(a). At an isolated point, every function is continuous.

In several contexts, the topology of a space is conveniently specified in terms of limit points. In many instances, this is accomplished by specifying when a point is the limit of a sequence, but for some spaces that are too large in some sense, one specifies also when a point is the limit of more general sets of points indexed by a directed set, known as nets.[5] A function is continuous only if it takes limits of sequences to limits of sequences. In the former case, preservation of limits is also sufficient; in the latter, a function may preserve all limits of sequences yet still fail to be continuous, and preservation of nets is a necessary and sufficient condition.

In detail, a function f: XY is sequentially continuous if whenever a sequence (xn) in X converges to a limit x, the sequence (f(xn)) converges to f(x).[6] Thus sequentially continuous functions "preserve sequential limits". Every continuous function is sequentially continuous. If X is a first-countable space and countable choice holds, then the converse also holds: any function preserving sequential limits is continuous. In particular, if X is a metric space, sequential continuity and continuity are equivalent. For non first-countable spaces, sequential continuity might be strictly weaker than continuity. (The spaces for which the two properties are equivalent are called sequential spaces.) This motivates the consideration of nets instead of sequences in general topological spaces. Continuous functions preserve limits of nets, and in fact this property characterizes continuous functions.

Instead of specifying the open subsets of a topological space, the topology can also be determined by a closure operator (denoted cl), which assigns to any subset AX its closure, or an interior operator (denoted int), which assigns to any subset A of X its interior. In these terms, a function

between topological spaces is continuous in the sense above if and only if for all subsets A of X

That is to say, given any element x of X that is in the closure of any subset A, f(x) belongs to the closure of f(A). This is equivalent to the requirement that for all subsets A' of X'

If f: XY and g: YZ are continuous, then so is the composition gf: XZ. If f: XY is continuous and

The possible topologies on a fixed set X are partially ordered: a topology τ1 is said to be coarser than another topology τ2 (notation: τ1 ⊆ τ2) if every open subset with respect to τ1 is also open with respect to τ2. Then, the identity map

is continuous if and only if τ1 ⊆ τ2 (see also comparison of topologies). More generally, a continuous function

stays continuous if the topology τY is replaced by a coarser topology and/or τX is replaced by a finer topology.

Symmetric to the concept of a continuous map is an open map, for which images of open sets are open. In fact, if an open map f has an inverse function, that inverse is continuous, and if a continuous map g has an inverse, that inverse is open. Given a bijective function f between two topological spaces, the inverse function f−1 need not be continuous. A bijective continuous function with continuous inverse function is called a homeomorphism.

If a continuous bijection has as its domain a compact space and its codomain is Hausdorff, then it is a homeomorphism.

where X is a topological space and S is a set (without a specified topology), the final topology on S is defined by letting the open sets of S be those subsets A of S for which f−1(A) is open in X. If S has an existing topology, f is continuous with respect to this topology if and only if the existing topology is coarser than the final topology on S. Thus the final topology can be characterized as the finest topology on S that makes f continuous. If f is surjective, this topology is canonically identified with the quotient topology under the equivalence relation defined by f.

Dually, for a function f from a set S to a topological space, the initial topology on S has as open subsets A of S those subsets for which f(A) is open in X. If S has an existing topology, f is continuous with respect to this topology if and only if the existing topology is finer than the initial topology on S. Thus the initial topology can be characterized as the coarsest topology on S that makes f continuous. If f is injective, this topology is canonically identified with the subspace topology of S, viewed as a subset of X.

Formally, a topological space X is called compact if each of its open covers has a finite subcover. Otherwise it is called non-compact. Explicitly, this means that for every arbitrary collection

Some branches of mathematics such as algebraic geometry, typically influenced by the French school of Bourbaki, use the term quasi-compact for the general notion, and reserve the term compact for topological spaces that are both Hausdorff and quasi-compact. A compact set is sometimes referred to as a compactum, plural compacta.

Every closed interval in R of finite length is compact. More is true: In Rn, a set is compact if and only if it is closed and bounded. (See Heine–Borel theorem).

Every continuous bijection from a compact space to a Hausdorff space is necessarily a homeomorphism.

Every sequence of points in a compact metric space has a convergent subsequence.

Every compact finite-dimensional manifold can be embedded in some Euclidean space Rn.

A topological space X is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.

The maximal connected subsets (ordered by inclusion) of a nonempty topological space are called the connected components of the space. The components of any topological space X form a partition of X: they are disjoint, nonempty, and their union is the whole space. Every component is a closed subset of the original space. It follows that, in the case where their number is finite, each component is also an open subset. However, if their number is infinite, this might not be the case; for instance, the connected components of the set of the rational numbers are the one-point sets, which are not open.

A space in which all components are one-point sets is called totally disconnected. Related to this property, a space X is called totally separated if, for any two distinct elements x and y of X, there exist disjoint open neighborhoods U of x and V of y such that X is the union of U and V. Clearly any totally separated space is totally disconnected, but the converse does not hold. For example, take two copies of the rational numbers Q, and identify them at every point except zero. The resulting space, with the quotient topology, is totally disconnected. However, by considering the two copies of zero, one sees that the space is not totally separated. In fact, it is not even Hausdorff, and the condition of being totally separated is strictly stronger than the condition of being Hausdorff.

This subspace of R² is path-connected, because a path can be drawn between any two points in the space.

A path from a point x to a point y in a topological space X is a continuous function f from the unit interval [0,1] to X with f(0) = x and f(1) = y. A path-component of X is an equivalence class of X under the equivalence relation, which makes x equivalent to y if there is a path from x to y. The space X is said to be path-connected (or pathwise connected or 0-connected) if there is at most one path-component; that is, if there is a path joining any two points in X. Again, many authors exclude the empty space.

Every path-connected space is connected. The converse is not always true: examples of connected spaces that are not path-connected include the extended long line L* and the topologist's sine curve.

However, subsets of the real line R are connected if and only if they are path-connected; these subsets are the intervals of R. Also, open subsets of Rn or Cn are connected if and only if they are path-connected. Additionally, connectedness and path-connectedness are the same for finite topological spaces.

In general, the product of the topologies of each Xi forms a basis for what is called the box topology on X. In general, the box topology is finer than the product topology, but for finite products they coincide.

Related to compactness is Tychonoff's theorem: the (arbitrary) product of compact spaces is compact.

Many of these names have alternative meanings in some of mathematical literature, as explained on History of the separation axioms; for example, the meanings of "normal" and "T4" are sometimes interchanged, similarly "regular" and "T3", etc. Many of the concepts also have several names; however, the one listed first is always least likely to be ambiguous.

Most of these axioms have alternative definitions with the same meaning; the definitions given here fall into a consistent pattern that relates the various notions of separation defined in the previous section. Other possible definitions can be found in the individual articles.

The Tietze extension theorem: In a normal space, every continuous real-valued function defined on a closed subspace can be extended to a continuous map defined on the whole space.

An axiom of countability is a property of certain mathematical objects (usually in a category) that requires the existence of a countable set with certain properties, while without it such sets might not exist.

The metrization theorems provide necessary and sufficient conditions for a topology to come from a metric.

The Baire category theorem says: If X is a complete metric space or a locally compact Hausdorff space, then the interior of every union of countably many nowhere dense sets is empty.[8]

A continuum (pl continua) is a nonempty compact connected metric space, or less frequently, a compact connected Hausdorff space. Continuum theory is the branch of topology devoted to the study of continua. These objects arise frequently in nearly all areas of topology and analysis, and their properties are strong enough to yield many 'geometric' features.

Topological dynamics concerns the behavior of a space and its subspaces over time when subjected to continuous change. Many examples with applications to physics and other areas of math include fluid dynamics, billiards and flows on manifolds. The topological characteristics of fractals in fractal geometry, of Julia sets and the Mandelbrot set arising in complex dynamics, and of attractors in differential equations are often critical to understanding these systems.[citation needed]

Pointless topology (also called point-free or pointfree topology) is an approach to topology that avoids mentioning points. The name 'pointless topology' is due to John von Neumann.[9] The ideas of pointless topology are closely related to mereotopologies, in which regions (sets) are treated as foundational without explicit reference to underlying point sets.

Dimension theory is a branch of general topology dealing with dimensional invariants of topological spaces.

A topological algebra A over a topological field K is a topological vector space together with a continuous multiplication

that makes it an algebra over K. A unital associative topological algebra is a topological ring.

The term was coined by David van Dantzig; it appears in the title of his doctoral dissertation (1931).

Set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC). A famous problem is the normal Moore space question, a question in general topology that was the subject of intense research. The answer to the normal Moore space question was eventually proved to be independent of ZFC.