The cup consists of a line carved into the interior of the cup, and a small vertical pipe in the center of the cup that leads to the bottom. The height of this pipe is the same as the line carved into the interior of the cup. The cup may be filled to the line without any fluid passing into the pipe in the center of the cup. However, when the amount of fluid exceeds this fill line, fluid will overflow into the pipe in the center of the cup. Due to the drag that molecules exert on one another, the cup will be emptied.

Pascal made contributions to developments in both hydrostatics and hydrodynamics. Pascal's Law is a fundamental principle of fluid mechanics that states that any pressure applied to the surface of a fluid is transmitted uniformly throughout the fluid in all directions, in such a way that initial variations in pressure are not changed.

If there are multiple types of molecules in the gas, the partial pressure of each type will be given by this equation. Under most conditions, the distribution of each species of gas is independent of the other species.

Any body of arbitrary shape which is immersed, partly or fully, in a fluid will experience the action of a net force in the opposite direction of the local pressure gradient. If this pressure gradient arises from gravity, the net force is in the vertical direction opposite that of the gravitational force. This vertical force is termed buoyancy or buoyant force and is equal in magnitude, but opposite in direction, to the weight of the displaced fluid. Mathematically,

Without surface tension, drops would not be able to form. The dimensions and stability of drops are determined by surface tension. The drop's surface tension is directly proportional to the cohesion property of the fluid.