# Finite-state machine

A **finite-state machine** (**FSM**) or **finite-state automaton** (**FSA**, plural: *automata*), **finite automaton**, or simply a **state machine**, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of *states* at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a *transition*.^{[1]} An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types—deterministic finite-state machines and non-deterministic finite-state machines.^{[2]} A deterministic finite-state machine can be constructed equivalent to any non-deterministic one.

The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense products when the proper combination of coins is deposited, elevators, whose sequence of stops is determined by the floors requested by riders, traffic lights, which change sequence when cars are waiting, and combination locks, which require the input of a sequence of numbers in the proper order.

The finite-state machine has less computational power than some other models of computation such as the Turing machine.^{[3]} The computational power distinction means there are computational tasks that a Turing machine can do but an FSM cannot. This is because an FSM's memory is limited by the number of states it has. A finite-state machine has the same computational power as a Turing machine that is restricted such that its head may only perform "read" operations, and always has to move from left to right. FSMs are studied in the more general field of automata theory.

An example of a simple mechanism that can be modeled by a state machine is a turnstile.^{[4]}^{[5]} A turnstile, used to control access to subways and amusement park rides, is a gate with three rotating arms at waist height, one across the entryway. Initially the arms are locked, blocking the entry, preventing patrons from passing through. Depositing a coin or token in a slot on the turnstile unlocks the arms, allowing a single customer to push through. After the customer passes through, the arms are locked again until another coin is inserted.

Considered as a state machine, the turnstile has two possible states: * Locked* and

*.*

**Unlocked**^{[4]}There are two possible inputs that affect its state: putting a coin in the slot (

*) and pushing the arm (*

**coin***). In the locked state, pushing on the arm has no effect; no matter how many times the input*

**push***is given, it stays in the locked state. Putting a coin in – that is, giving the machine a*

**push***input – shifts the state from*

**coin***to*

**Locked***. In the unlocked state, putting additional coins in has no effect; that is, giving additional*

**Unlocked***inputs does not change the state. However, a customer pushing through the arms, giving a*

**coin***input, shifts the state back to*

**push***.*

**Locked**The turnstile state machine can be represented by a state-transition table, showing for each possible state, the transitions between them (based upon the inputs given to the machine) and the outputs resulting from each input:

The turnstile state machine can also be represented by a directed graph called a state diagram *(above)*. Each state is represented by a node (*circle*). Edges (*arrows*) show the transitions from one state to another. Each arrow is labeled with the input that triggers that transition. An input that doesn't cause a change of state (such as a * coin* input in the

*state) is represented by a circular arrow returning to the original state. The arrow into the*

**Unlocked***node from the black dot indicates it is the initial state.*

**Locked**A *state* is a description of the status of a system that is waiting to execute a *transition*. A transition is a set of actions to be executed when a condition is fulfilled or when an event is received.
For example, when using an audio system to listen to the radio (the system is in the "radio" state), receiving a "next" stimulus results in moving to the next station. When the system is in the "CD" state, the "next" stimulus results in moving to the next track. Identical stimuli trigger different actions depending on the current state.

In some finite-state machine representations, it is also possible to associate actions with a state:

Several state-transition table types are used. The most common representation is shown below: the combination of current state (e.g. B) and input (e.g. Y) shows the next state (e.g. C). The complete action's information is not directly described in the table and can only be added using footnotes.^{[further explanation needed]} An FSM definition including the full action's information is possible using state tables (see also virtual finite-state machine).

The Unified Modeling Language has a notation for describing state machines. UML state machines overcome the limitations^{[citation needed]} of traditional finite-state machines while retaining their main benefits. UML state machines introduce the new concepts of hierarchically nested states and orthogonal regions, while extending the notion of actions. UML state machines have the characteristics of both Mealy machines and Moore machines. They support actions that depend on both the state of the system and the triggering event, as in Mealy machines, as well as entry and exit actions, which are associated with states rather than transitions, as in Moore machines.^{[citation needed]}

The Specification and Description Language is a standard from ITU that includes graphical symbols to describe actions in the transition:

SDL embeds basic data types called "Abstract Data Types", an action language, and an execution semantic in order to make the finite-state machine executable.^{[citation needed]}

There are a large number of variants to represent an FSM such as the one in figure 3.

In addition to their use in modeling reactive systems presented here, finite-state machines are significant in many different areas, including electrical engineering, linguistics, computer science, philosophy, biology, mathematics, video game programming, and logic. Finite-state machines are a class of automata studied in automata theory and the theory of computation. In computer science, finite-state machines are widely used in modeling of application behavior, design of hardware digital systems, software engineering, compilers, network protocols, and the study of computation and languages.

Finite-state machines can be subdivided into acceptors, classifiers, transducers and sequencers.^{[6]}

**Acceptors** (also called **detectors** or **recognizers**) produce binary output, indicating whether or not the received input is accepted. Each state of an acceptor is either *accepting* or *non accepting*. Once all input has been received, if the current state is an accepting state, the input is accepted; otherwise it is rejected. As a rule, input is a sequence of symbols (characters); actions are not used. The start state can also be an accepting state, in which case the acceptor accepts the empty string. The example in figure 4 shows an acceptor that accepts the string "nice". In this acceptor, the only accepting state is state 7.

A (possibly infinite) set of symbol sequences, called a formal language, is a regular language if there is some acceptor that accepts *exactly* that set. For example, the set of binary strings with an even number of zeroes is a regular language (cf. Fig. 5), while the set of all strings whose length is a prime number is not.^{[7]}^{: 18, 71 }

An acceptor could also be described as defining a language that would contain every string accepted by the acceptor but none of the rejected ones; that language is *accepted* by the acceptor. By definition, the languages accepted by acceptors are the regular languages.

The problem of determining the language accepted by a given acceptor is an instance of the algebraic path problem—itself a generalization of the shortest path problem to graphs with edges weighted by the elements of an (arbitrary) semiring.^{[8]}^{[9]}^{[jargon]}

An example of an accepting state appears in Fig. 5: a deterministic finite automaton (DFA) that detects whether the binary input string contains an even number of 0s.

*S*_{1} (which is also the start state) indicates the state at which an even number of 0s has been input. S_{1} is therefore an accepting state. This acceptor will finish in an accept state, if the binary string contains an even number of 0s (including any binary string containing no 0s). Examples of strings accepted by this acceptor are ε (the empty string), 1, 11, 11..., 00, 010, 1010, 10110, etc.

**Classifiers** are a generalization of acceptors that produce *n*-ary output where *n* is strictly greater than two.^{[10]}

**Transducers** produce output based on a given input and/or a state using actions. They are used for control applications and in the field of computational linguistics.

**Sequencers** (also called **generators**) are a subclass of acceptors and transducers that have a single-letter input alphabet. They produce only one sequence which can be seen as an output sequence of acceptor or transducer outputs.^{[6]}

A further distinction is between **deterministic** (DFA) and **non-deterministic** (NFA, GNFA) automata. In a deterministic automaton, every state has exactly one transition for each possible input. In a non-deterministic automaton, an input can lead to one, more than one, or no transition for a given state. The powerset construction algorithm can transform any nondeterministic automaton into a (usually more complex) deterministic automaton with identical functionality.

A finite-state machine with only one state is called a "combinatorial FSM". It only allows actions upon transition *into* a state. This concept is useful in cases where a number of finite-state machines are required to work together, and when it is convenient to consider a purely combinatorial part as a form of FSM to suit the design tools.^{[11]}

There are other sets of semantics available to represent state machines. For example, there are tools for modeling and designing logic for embedded controllers.^{[12]} They combine hierarchical state machines (which usually have more than one current state), flow graphs, and truth tables into one language, resulting in a different formalism and set of semantics.^{[13]} These charts, like Harel's original state machines,^{[14]} support hierarchically nested states, orthogonal regions, state actions, and transition actions.^{[15]}

In accordance with the general classification, the following formal definitions are found.

A finite-state machine has the same computational power as a Turing machine that is restricted such that its head may only perform "read" operations, and always has to move from left to right. That is, each formal language accepted by a finite-state machine is accepted by such a kind of restricted Turing machine, and vice versa.^{[16]}

Optimizing an FSM means finding a machine with the minimum number of states that performs the same function. The fastest known algorithm doing this is the Hopcroft minimization algorithm.^{[18]}^{[19]} Other techniques include using an implication table, or the Moore reduction procedure.^{[20]} Additionally, acyclic FSAs can be minimized in linear time.^{[21]}

In a digital circuit, an FSM may be built using a programmable logic device, a programmable logic controller, logic gates and flip flops or relays. More specifically, a hardware implementation requires a register to store state variables, a block of combinational logic that determines the state transition, and a second block of combinational logic that determines the output of an FSM. One of the classic hardware implementations is the Richards controller.

In a *Medvedev machine*, the output is directly connected to the state flip-flops minimizing the time delay between flip-flops and output.^{[22]}^{[23]}

Through state encoding for low power state machines may be optimized to minimize power consumption.

The following concepts are commonly used to build software applications with finite-state machines:

Finite automata are often used in the frontend of programming language compilers. Such a frontend may comprise several finite-state machines that implement a lexical analyzer and a parser.
Starting from a sequence of characters, the lexical analyzer builds a sequence of language tokens (such as reserved words, literals, and identifiers) from which the parser builds a syntax tree. The lexical analyzer and the parser handle the regular and context-free parts of the programming language's grammar.^{[24]}

Finite Markov-chain processes are also known as subshifts of finite type.