# Feynman diagram

Feynman diagrams are a pictorial representation of a contribution to the total amplitude for a process that can happen in several different ways. When a group of incoming particles are to scatter off each other, the process can be thought of as one where the particles travel over all possible paths, including paths that go backward in time.

A Feynman diagram represents a perturbative contribution to the amplitude of a quantum transition from some initial quantum state to some final quantum state.

For example, in the process of electron-positron annihilation the initial state is one electron and one positron, the final state: two photons.

The initial state is often assumed to be at the left of the diagram and the final state at the right (although other conventions are also used quite often).

A Feynman diagram consists of points, called vertices, and lines attached to the vertices.

The particles in the initial state are depicted by lines sticking out in the direction of the initial state (e.g., to the left), the particles in the final state are represented by lines sticking out in the direction of the final state (e.g., to the right).

In QED a vertex always has three lines attached to it: one bosonic line, one fermionic line with arrow toward the vertex, and one fermionic line with arrow away from the vertex.

The vertices might be connected by a bosonic or fermionic propagator. A bosonic propagator is represented by a wavy line connecting two vertices (•~•). A fermionic propagator is represented by a solid line (with an arrow in one or another direction) connecting two vertices, (•←•).

The number of vertices gives the order of the term in the perturbation series expansion of the transition amplitude.

has a contribution from the second order Feynman diagram shown adjacent:

The diagrams are drawn according to the Feynman rules, which depend upon the interaction Lagrangian. For the QED interaction Lagrangian

The Wick's expansion of the integrand gives (among others) the following term

is the electromagnetic contraction (propagator) in the Feynman gauge. This term is represented by the Feynman diagram at the right. This diagram gives contributions to the following processes:

A simple example is the free relativistic scalar field in d dimensions, whose action integral is:

The path integral gives the expectation value of operators between the initial and final state:

and in the limit that A and B recede to the infinite past and the infinite future, the only contribution that matters is from the ground state (this is only rigorously true if the path-integral is defined slightly rotated into imaginary time). The path integral can be thought of as analogous to a probability distribution, and it is convenient to define it so that multiplying by a constant doesn't change anything:

The normalization factor on the bottom is called the *partition function* for the field, and it coincides with the statistical mechanical partition function at zero temperature when rotated into imaginary time.

which is the complex conjugate-transpose, up to factors of 2π. On a finite volume lattice, the determinant is nonzero and independent of the field values.

where L is the side-length of the box. Each separate factor is an oscillatory Gaussian, and the width of the Gaussian diverges as the volume goes to infinity.

The expectation value of the field is the statistical expectation value of the field when chosen according to the probability distribution:

To find any correlation function, generate a field again and again by this procedure, and find the statistical average:

For free fields with a quadratic action, the probability distribution is a high-dimensional Gaussian, and the statistical average is given by an explicit formula. But the Monte Carlo method also works well for bosonic interacting field theories where there is no closed form for the correlation functions.

Each mode is independently Gaussian distributed. The expectation of field modes is easy to calculate:

Strictly speaking, this is an approximation: the lattice propagator is:

The form of the propagator can be more easily found by using the equation of motion for the field. From the Lagrangian, the equation of motion is:

If the equations of motion are linear, the propagator will always be the reciprocal of the quadratic-form matrix that defines the free Lagrangian, since this gives the equations of motion. This is also easy to see directly from the path integral. The factor of i disappears in the Euclidean theory.

Because each field mode is an independent Gaussian, the expectation values for the product of many field modes obeys *Wick's theorem*:

where the sum is over each partition of the field modes into pairs, and the product is over the pairs. For example,

An interpretation of Wick's theorem is that each field insertion can be thought of as a dangling line, and the expectation value is calculated by linking up the lines in pairs, putting a delta function factor that ensures that the momentum of each partner in the pair is equal, and dividing by the propagator.

and this is in fact the correct answer. So Wick's theorem holds no matter how many of the momenta of the internal variables coincide.

Interactions are represented by higher order contributions, since quadratic contributions are always Gaussian. The simplest interaction is the quartic self-interaction, with an action:

The reason for the combinatorial factor 4! will be clear soon. Writing the action in terms of the lattice (or continuum) Fourier modes:

To compute a correlation function in the interacting theory, there is a contribution from the X terms now. For example, the path-integral for the four-field correlator:

By Wick's theorem, each pair of half-lines must be paired together to make a *line*, and this line gives a factor of

The number of ways of making a diagram by joining half-lines into lines almost completely cancels the factorial factors coming from the Taylor series of the exponential and the 4! at each vertex.

A forest diagram is one where all the internal lines have momentum that is completely determined by the external lines and the condition that the incoming and outgoing momentum are equal at each vertex. The contribution of these diagrams is a product of propagators, without any integration. A tree diagram is a connected forest diagram.

It is easy to verify that in all these cases, the momenta on all the internal lines is determined by the external momenta and the condition of momentum conservation in each vertex.

The number of ways to form a given Feynman diagram by joining together half-lines is large, and by Wick's theorem, each way of pairing up the half-lines contributes equally. Often, this completely cancels the factorials in the denominator of each term, but the cancellation is sometimes incomplete.

The uncancelled denominator is called the *symmetry factor* of the diagram. The contribution of each diagram to the correlation function must be divided by its symmetry factor.

The symmetry factor theorem gives the symmetry factor for a general diagram: the contribution of each Feynman diagram must be divided by the order of its group of automorphisms, the number of symmetries that it has.

This theorem has an interpretation in terms of particle-paths: when identical particles are present, the integral over all intermediate particles must not double-count states that differ only by interchanging identical particles.

Proof: To prove this theorem, label all the internal and external lines of a diagram with a unique name. Then form the diagram by linking a half-line to a name and then to the other half line.

But the number of unnamed diagrams is smaller than the number of named diagram by the order of the automorphism group of the graph.

where i labels the (infinitely) many connected Feynman diagrams possible.

An immediate consequence of the linked-cluster theorem is that all vacuum bubbles, diagrams without external lines, cancel when calculating correlation functions. A correlation function is given by a ratio of path-integrals:

The top is the sum over all Feynman diagrams, including disconnected diagrams that do not link up to external lines at all. In terms of the connected diagrams, the numerator includes the same contributions of vacuum bubbles as the denominator:

Where the sum over E diagrams includes only those diagrams each of whose connected components end on at least one external line. The vacuum bubbles are the same whatever the external lines, and give an overall multiplicative factor. The denominator is the sum over all vacuum bubbles, and dividing gets rid of the second factor.

The vacuum bubbles then are only useful for determining Z itself, which from the definition of the path integral is equal to:

Correlation functions are the sum of the connected Feynman diagrams, but the formalism treats the connected and disconnected diagrams differently. Internal lines end on vertices, while external lines go off to insertions. Introducing *sources* unifies the formalism, by making new vertices where one line can end.

Sources are external fields, fields that contribute to the action, but are not dynamical variables. A scalar field source is another scalar field h that contributes a term to the (Lorentz) Lagrangian:

The sum of the connected diagrams in the presence of sources includes a term for each connected diagram in the absence of sources, except now the diagrams can end on the source. Traditionally, a source is represented by a little "×" with one line extending out, exactly as an insertion.

which, on a lattice, is the product of an oscillatory exponential for each field value:

The Fourier transform of a delta-function is a constant, which gives a formal expression for a delta function:

which integrates over the Fourier transform coordinate, over h. This expression is useful for formally changing field coordinates in the path integral, much as a delta function is used to change coordinates in an ordinary multi-dimensional integral.

The correlation functions are derivatives of the path integral with respect to the source:

In Euclidean space, source contributions to the action can still appear with a factor of i, so that they still do a Fourier transform.

So that the propagator is the inverse of the matrix in the quadratic part of the action in both the Bose and Fermi case.

For real Grassmann fields, for Majorana fermions, the path integral is a Pfaffian times a source quadratic form, and the formulas give the square root of the determinant, just as they do for real Bosonic fields. The propagator is still the inverse of the quadratic part.

formally gives the equations of motion and the anticommutation relations of the Dirac field, just as the Klein Gordon Lagrangian in an ordinary path integral gives the equations of motion and commutation relations of the scalar field. By using the spatial Fourier transform of the Dirac field as a new basis for the Grassmann algebra, the quadratic part of the Dirac action becomes simple to invert:

This rule is the only visible effect of the exclusion principle in internal lines. When there are external lines, the amplitudes are antisymmetric when two Fermi insertions for identical particles are interchanged. This is automatic in the source formalism, because the sources for Fermi fields are themselves Grassmann valued.

The naive propagator for photons is infinite, since the Lagrangian for the A-field is:

The first factor, the delta function, fixes the gauge. The second factor sums over different values of f that are inequivalent gauge fixings. This is simply

The additional contribution from gauge-fixing cancels the second half of the free Lagrangian, giving the Feynman Lagrangian:

which is just like four independent free scalar fields, one for each component of A. The Feynman propagator is:

The one difference is that the sign of one propagator is wrong in the Lorentz case: the timelike component has an opposite sign propagator. This means that these particle states have negative norm—they are not physical states. In the case of photons, it is easy to show by diagram methods that these states are not physical—their contribution cancels with longitudinal photons to only leave two physical photon polarization contributions for any value of k.

To find the Feynman rules for non-Abelian gauge fields, the procedure that performs the gauge fixing must be carefully corrected to account for a change of variables in the path-integral.

The gauge fixing factor has an extra determinant from popping the delta function:

The derivative-factor ensures that popping the delta function in θ removes the integral. Exchanging the order of integration,

In the path-integral for a nonabelian gauge field, the analogous manipulation is:

The factor in front is the volume of the gauge group, and it contributes a constant, which can be discarded. The remaining integral is over the gauge fixed action.

To get a covariant gauge, the gauge fixing condition is the same as in the Abelian case:

Whose variation under an infinitesimal gauge transformation is given by:

where α is the adjoint valued element of the Lie algebra at every point that performs the infinitesimal gauge transformation. This adds the Faddeev Popov determinant to the action:

which can be rewritten as a Grassmann integral by introducing ghost fields:

The diagrams are derived from this action. The propagator for the spin-1 fields has the usual Feynman form. There are vertices of degree 3 with momentum factors whose couplings are the structure constants, and vertices of degree 4 whose couplings are products of structure constants. There are additional ghost loops, which cancel out timelike and longitudinal states in A loops.

In the Abelian case, the determinant for covariant gauges does not depend on A, so the ghosts do not contribute to the connected diagrams.

Feynman diagrams were originally discovered by Feynman, by trial and error, as a way to represent the contribution to the S-matrix from different classes of particle trajectories.

The meaning of this identity (which is an elementary integration) is made clearer by Fourier transforming to real space.

The Schwinger representation is both useful for making manifest the particle aspect of the propagator, and for symmetrizing denominators of loop diagrams.

The Jacobian for this transformation of variables is easy to work out from the identities:

When the loop has more vertices, there are more denominators to combine:

The Jacobian for the coordinate transformation can be worked out as before:

Performing the u integral gives the general prescription for combining denominators:

The correlation functions of a quantum field theory describe the scattering of particles. The definition of "particle" in relativistic field theory is not self-evident, because if you try to determine the position so that the uncertainty is less than the compton wavelength, the uncertainty in energy is large enough to produce more particles and antiparticles of the same type from the vacuum. This means that the notion of a single-particle state is to some extent incompatible with the notion of an object localized in space.

In the 1930s, Wigner gave a mathematical definition for single-particle states: they are a collection of states that form an irreducible representation of the Poincaré group. Single particle states describe an object with a finite mass, a well defined momentum, and a spin. This definition is fine for protons and neutrons, electrons and photons, but it excludes quarks, which are permanently confined, so the modern point of view is more accommodating: a particle is anything whose interaction can be described in terms of Feynman diagrams, which have an interpretation as a sum over particle trajectories.

The invariant amplitude M is then the probability amplitude for relativistically normalized incoming states to become relativistically normalized outgoing states.

The nonrelativistic potential, which scatters in all directions with an equal amplitude (in the Born approximation), is one whose Fourier transform is constant—a delta-function potential. The lowest order scattering of the theory reveals the non-relativistic interpretation of this theory—it describes a collection of particles with a delta-function repulsion. Two such particles have an aversion to occupying the same point at the same time.

Thinking of Feynman diagrams as a perturbation series, nonperturbative effects like tunneling do not show up, because any effect that goes to zero faster than any polynomial does not affect the Taylor series. Even bound states are absent, since at any finite order particles are only exchanged a finite number of times, and to make a bound state, the binding force must last forever.

The number of Feynman diagrams at high orders of perturbation theory is very large, because there are as many diagrams as there are graphs with a given number of nodes. Nonperturbative effects leave a signature on the way in which the number of diagrams and resummations diverge at high order. It is only because non-perturbative effects appear in hidden form in diagrams that it was possible to analyze nonperturbative effects in string theory, where in many cases a Feynman description is the only one available.