# Distributive property

In mathematics, the **distributive property** of binary operations generalizes the **distributive law**, which asserts that the equality

In either case, the distributive property can be described in words as:

To multiply a sum (or difference) by a factor, each summand (or minuend and subtrahend) is multiplied by this factor and the resulting products are added (or subtracted).

If the operation outside the parentheses (in this case, the multiplication) is commutative, then left-distributivity implies right-distributivity and vice versa, and one talks simply of *distributivity*.

One example of an operation that is "only" right-distributive is division, which is not commutative:

The distributive laws are among the axioms for rings (like the ring of integers) and fields (like the field of rational numbers). Here multiplication is distributive over addition, but addition is not distributive over multiplication. Examples of structures with two operations that are each distributive over the other are Boolean algebras such as the algebra of sets or the switching algebra.

Multiplying sums can be put into words as follows: When a sum is multiplied by a sum, multiply each summand of a sum with each summand of the other sum (keeping track of signs) then add up all of the resulting products.

The distributive law is valid for matrix multiplication. More precisely,

In standard truth-functional propositional logic, *distribution*^{[3]}^{[4]} in logical proofs uses two valid rules of replacement to expand individual occurrences of certain logical connectives, within some formula, into separate applications of those connectives across subformulas of the given formula. The rules are

*Distributivity* is a property of some logical connectives of truth-functional propositional logic. The following logical equivalences demonstrate that distributivity is a property of particular connectives. The following are truth-functional tautologies.

Distributivity is most commonly found in semirings, notably the particular cases of rings and distributive lattices.

A Boolean algebra can be interpreted either as a special kind of ring (a Boolean ring) or a special kind of distributive lattice (a Boolean lattice). Each interpretation is responsible for different distributive laws in the Boolean algebra.

Similar structures without distributive laws are near-rings and near-fields instead of rings and division rings. The operations are usually defined to be distributive on the right but not on the left.

In several mathematical areas, generalized distributivity laws are considered. This may involve the weakening of the above conditions or the extension to infinitary operations. Especially in order theory one finds numerous important variants of distributivity, some of which include infinitary operations, such as the infinite distributive law; others being defined in the presence of only *one* binary operation, such as the according definitions and their relations are given in the article distributivity (order theory). This also includes the notion of a completely distributive lattice.

A generalized distributive law has also been proposed in the area of information theory.

In the study of propositional logic and Boolean algebra, the term **antidistributive law** is sometimes used to denote the interchange between conjunction and disjunction when implication factors over them:^{[7]}

These two tautologies are a direct consequence of the duality in De Morgan's laws.