# Countable set

To understand what this means, we first examine what it does not mean. For example, there are infinitely many odd integers, infinitely many even integers, and (hence) infinitely many integers overall. However, it turns out that the number of even integers, which is the same as the number of odd integers, is also the same as the number of integers overall. This is because we can arrange things such that, for every integer, there is a distinct even integer:

However, not all infinite sets have the same cardinality. For example, Georg Cantor (who introduced this concept) demonstrated that the real numbers cannot be put into one-to-one correspondence with the natural numbers (non-negative integers), and therefore that the set of real numbers has a greater cardinality than the set of natural numbers.

It might seem natural to divide the sets into different classes: put all the sets containing one element together; all the sets containing two elements together; ...; finally, put together all infinite sets and consider them as having the same size. This view is not tenable, however, under the natural definition of size.

To elaborate this, we need the concept of a bijection. Although a "bijection" may seem a more advanced concept than a number, the usual development of mathematics in terms of set theory defines functions before numbers, as they are based on much simpler sets. This is where the concept of a bijection comes in: define the correspondence

We now generalize this situation; we define that two sets are of the same size, if and only if there is a bijection between them. For all finite sets, this gives us the usual definition of "the same size".

As in the earlier example, every element of A has been paired off with precisely one element of B, and vice versa. Hence they have the same size. This is an example of a set of the same size as one of its proper subsets, which is impossible for finite sets.

0 ↔ (0, 0), 1 ↔ (1, 0), 2 ↔ (0, 1), 3 ↔ (2, 0), 4 ↔ (1, 1), 5 ↔ (0, 2), 6 ↔ (3, 0), ....

With the foresight of knowing that there are uncountable sets, we can wonder whether or not this last result can be pushed any further. The answer is "yes" and "no", we can extend it, but we need to assume a new axiom to do so.

This set is the union of the length-1 sequences, the length-2 sequences, the length-3 sequences, each of which is a countable set (finite Cartesian product). So we are talking about a countable union of countable sets, which is countable by the previous theorem.

The elements of any finite subset can be ordered into a finite sequence. There are only countably many finite sequences, so also there are only countably many finite subsets.

was seen as paradoxical in the early days of set theory, see Skolem's paradox for more.