# Conservation of mass

For systems which include large gravitational fields, general relativity has to be taken into account; thus mass-energy conservation becomes a more complex concept, subject to different definitions, and neither mass nor energy is as strictly and simply conserved as is the case in special relativity.

The conservation of mass was obscure for millennia because of the buoyancy effect of the Earth's atmosphere on the weight of gases. For example, a piece of wood weighs less after burning; this seemed to suggest that some of its mass disappears, or is transformed or lost. This was not disproved until careful experiments were performed in which chemical reactions such as rusting were allowed to take place in sealed glass ampoules; it was found that the chemical reaction did not change the weight of the sealed container and its contents. Weighing of gases using scales was not possible until the invention of the vacuum pump in the 17th century.

In special relativity, the conservation of mass does not apply if the system is open and energy escapes. However, it does continue to apply to totally closed (isolated) systems. If energy cannot escape a system, its mass cannot decrease. In relativity theory, so long as any type of energy is retained within a system, this energy exhibits mass.

The mass associated with chemical amounts of energy is too small to measure

The change in mass of certain kinds of open systems where atoms or massive particles are not allowed to escape, but other types of energy (such as light or heat) are allowed to enter, escape or be merged, went unnoticed during the 19th century, because the change in mass associated with addition or loss of small quantities of thermal or radiant energy in chemical reactions is very small. (In theory, mass would not change at all for experiments conducted in isolated systems where heat and work were not allowed in or out.)

The conservation of relativistic mass implies the viewpoint of a single observer (or the view from a single inertial frame) since changing inertial frames may result in a change of the total energy (relativistic energy) for systems, and this quantity determines the relativistic mass.

For moving massive particles in a system, examining the rest masses of the various particles also amounts to introducing many different inertial observation frames (which is prohibited if total system energy and momentum are to be conserved), and also when in the rest frame of one particle, this procedure ignores the momenta of other particles, which affect the system mass if the other particles are in motion in this frame.

The conservation of both relativistic and invariant mass applies even to systems of particles created by pair production, where energy for new particles may come from kinetic energy of other particles, or from one or more photons as part of a system that includes other particles besides a photon. Again, neither the relativistic nor the invariant mass of totally closed (that is, isolated) systems changes when new particles are created. However, different inertial observers will disagree on the value of this conserved mass, if it is the relativistic mass (i.e., relativistic mass is conserved but not invariant). However, all observers agree on the value of the conserved mass if the mass being measured is the invariant mass (i.e., invariant mass is both conserved and invariant).