Computer network

Network that allows computers to share resources and communicate with each other

A computer network extends interpersonal communications by electronic means with various technologies, such as email, instant messaging, online chat, voice and video telephone calls, and video conferencing. A network allows sharing of network and computing resources. Users may access and use resources provided by devices on the network, such as printing a document on a shared network printer or use of a shared storage device. A network allows sharing of files, data, and other types of information giving authorized users the ability to access information stored on other computers on the network. Distributed computing uses computing resources across a network to accomplish tasks.

The physical link technologies of packet network typically limit the size of packets to a certain maximum transmission unit (MTU). A longer message may be fragmented before it is transferred and once the packets arrive, they are reassembled to construct the original message.

The physical or geographic locations of network nodes and links generally have relatively little effect on a network, but the topology of interconnections of a network can significantly affect its throughput and reliability. With many technologies, such as bus or star networks, a single failure can cause the network to fail entirely. In general, the more interconnections there are, the more robust the network is; but the more expensive it is to install. Therefore most network diagrams are arranged by their network topology which is the map of logical interconnections of network hosts.

The physical layout of the nodes in a network may not necessarily reflect the network topology. As an example, with FDDI, the network topology is a ring, but the physical topology is often a star, because all neighboring connections can be routed via a central physical location. Physical layout is not completely irrelevant, however, as common ducting and equipment locations can represent single points of failure due to issues like fires, power failures and flooding.

The following classes of wired technologies are used in computer networking.

2007 map showing submarine optical fiber telecommunication cables around the world.

Network connections can be established wirelessly using radio or other electromagnetic means of communication.

Bridges and switches divide the network's collision domain but maintain a single broadcast domain. Network segmentation through bridging and switching helps break down a large, congested network into an aggregation of smaller, more efficient networks.

A router is an internetworking device that forwards packets between networks by processing the addressing or routing information included in the packet. The routing information is often processed in conjunction with the routing table. A router uses its routing table to determine where to forward packets and does not require broadcasting packets which is inefficient for very big networks.

A firewall is a network device or software for controlling network security and access rules. Firewalls are inserted in connections between secure internal networks and potentially insecure external networks such as the Internet. Firewalls are typically configured to reject access requests from unrecognized sources while allowing actions from recognized ones. The vital role firewalls play in network security grows in parallel with the constant increase in cyber attacks.

The TCP/IP model and its relation to common protocols used at different layers of the model.
Message flows between two devices (A-B) at the four layers of the TCP/IP model in the presence of a router (R). Red flows are effective communication paths, black paths are across the actual network links.

There are many communication protocols, a few of which are described below.

Ethernet is a family of technologies used in wired LANs. It is described by a set of standards together called IEEE 802.3 published by the Institute of Electrical and Electronics Engineers.

Routing calculates good paths through a network for information to take. For example, from node 1 to node 6 the best routes are likely to be 1-8-7-6, 1-8-10-6 or 1-9-10-6, as these are the shortest routes.

Networks may be characterized by many properties or features, such as physical capacity, organizational purpose, user authorization, access rights, and others. Another distinct classification method is that of the physical extent or geographic scale.

A storage area network (SAN) is a dedicated network that provides access to consolidated, block-level data storage. SANs are primarily used to make storage devices, such as disk arrays, tape libraries, and optical jukeboxes, accessible to servers so that the devices appear like locally attached devices to the operating system. A SAN typically has its own network of storage devices that are generally not accessible through the local area network by other devices. The cost and complexity of SANs dropped in the early 2000s to levels allowing wider adoption across both enterprise and small to medium-sized business environments.

For example, a university campus network is likely to link a variety of campus buildings to connect academic colleges or departments, the library, and student residence halls.

A backbone network is part of a computer network infrastructure that provides a path for the exchange of information between different LANs or subnetworks. A backbone can tie together diverse networks within the same building, across different buildings, or over a wide area.

A metropolitan area network (MAN) is a large computer network that usually spans a city or a large campus.

An enterprise private network is a network that a single organization builds to interconnect its office locations (e.g., production sites, head offices, remote offices, shops) so they can share computer resources.

A virtual private network (VPN) is an overlay network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The data link layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.

VPN may have best-effort performance or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.

Networks are typically managed by the organizations that own them. Private enterprise networks may use a combination of intranets and extranets. They may also provide network access to the Internet, which has no single owner and permits virtually unlimited global connectivity.

An extranet is a network that is also under the administrative control of a single organization but supports a limited connection to a specific external network. For example, an organization may provide access to some aspects of its intranet to share data with its business partners or customers. These other entities are not necessarily trusted from a security standpoint. Network connection to an extranet is often, but not always, implemented via WAN technology.

An internetwork is the connection of multiple different types of computer networks to form a single computer network by layering on top of the different networking software and connecting them together using routers.

Services are usually based on a service protocol that defines the format and sequencing of messages between clients and servers of that network service.

The following list gives examples of network performance measures for a circuit-switched network and one type of packet-switched network, viz. ATM:

Network surveillance is the monitoring of data being transferred over computer networks such as the Internet. The monitoring is often done surreptitiously and may be done by or at the behest of governments, by corporations, criminal organizations, or individuals. It may or may not be legal and may or may not require authorization from a court or other independent agency.

Computer and network surveillance programs are widespread today, and almost all Internet traffic is or could potentially be monitored for clues to illegal activity.