# Cauchy sequence

In mathematics, a **Cauchy sequence** (French pronunciation: [koʃi]; *KOH-shee*), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses.^{[1]} More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other.

It is not sufficient for each term to become arbitrarily close to the *preceding* term. For instance, in the sequence of square roots of natural numbers:

The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends only on the terms of the sequence itself, as opposed to the definition of convergence, which uses the limit value as well as the terms. This is often exploited in algorithms, both theoretical and applied, where an iterative process can be shown relatively easily to produce a Cauchy sequence, consisting of the iterates, thus fulfilling a logical condition, such as termination.

Generalizations of Cauchy sequences in more abstract uniform spaces exist in the form of Cauchy filters and Cauchy nets.

Moduli of Cauchy convergence are used by constructive mathematicians who do not wish to use any form of choice. Using a modulus of Cauchy convergence can simplify both definitions and theorems in constructive analysis. Regular Cauchy sequences were used by Errett Bishop in his , and by Douglas Bridges in a non-constructive textbook (ISBN 978-0-387-98239-7).

Roughly speaking, the terms of the sequence are getting closer and closer together in a way that suggests that the sequence ought to have a limit in *X*. Nonetheless, such a limit does not always exist within *X*: the property of a space that every Cauchy sequence converges in the space is called *completeness*, and is detailed below.

A metric space (*X*, *d*) in which every Cauchy sequence converges to an element of *X* is called complete.

The real numbers are complete under the metric induced by the usual absolute value, and one of the standard constructions of the real numbers involves Cauchy sequences of rational numbers. In this construction, each equivalence class of Cauchy sequences of rational numbers with a certain tail behavior—that is, each class of sequences that get arbitrarily close to one another— is a real number.

A rather different type of example is afforded by a metric space *X* which has the discrete metric (where any two distinct points are at distance 1 from each other). Any Cauchy sequence of elements of *X* must be constant beyond some fixed point, and converges to the eventually repeating term.

These last two properties, together with the Bolzano–Weierstrass theorem, yield one standard proof of the completeness of the real numbers, closely related to both the Bolzano–Weierstrass theorem and the Heine–Borel theorem. Every Cauchy sequence of real numbers is bounded, hence by Bolzano–Weierstrass has a convergent subsequence, hence is itself convergent. This proof of the completeness of the real numbers implicitly makes use of the least upper bound axiom. The alternative approach, mentioned above, of *constructing* the real numbers as the completion of the rational numbers, makes the completeness of the real numbers tautological.