C (programming language)

Even after the publication of the 1989 ANSI standard, for many years K&R C was still considered the "lowest common denominator" to which C programmers restricted themselves when maximum portability was desired, since many older compilers were still in use, and because carefully written K&R C code can be legal Standard C as well.

The int type specifiers which are commented out could be omitted in K&R C, but are required in later standards.

In 1990, the ANSI C standard (with formatting changes) was adopted by the International Organization for Standardization (ISO) as ISO/IEC 9899:1990, which is sometimes called C90. Therefore, the terms "C89" and "C90" refer to the same programming language.

ANSI, like other national standards bodies, no longer develops the C standard independently, but defers to the international C standard, maintained by the working group ISO/IEC JTC1/SC22/WG14. National adoption of an update to the international standard typically occurs within a year of ISO publication.

In cases where code must be compilable by either standard-conforming or K&R C-based compilers, the __STDC__ macro can be used to split the code into Standard and K&R sections to prevent the use on a K&R C-based compiler of features available only in Standard C.

In 2007, work began on another revision of the C standard, informally called "C1X" until its official publication of ISO/IEC 9899:2011 on 2011-12-08. The C standards committee adopted guidelines to limit the adoption of new features that had not been tested by existing implementations.

Historically, embedded C programming requires nonstandard extensions to the C language in order to support exotic features such as fixed-point arithmetic, multiple distinct memory banks, and basic I/O operations.

Newline indicates the end of a text line; it need not correspond to an actual single character, although for convenience C treats it as one.

C89 has 32 reserved words, also known as keywords, which are the words that cannot be used for any purposes other than those for which they are predefined:

The opening curly brace indicates the beginning of the definition of the main function.

C's usual arithmetic conversions allow for efficient code to be generated, but can sometimes produce unexpected results. For example, a comparison of signed and unsigned integers of equal width requires a conversion of the signed value to unsigned. This can generate unexpected results if the signed value is negative.

The following example using modern C (C99 or later) shows allocation of a two-dimensional array on the heap and the use of multi-dimensional array indexing for accesses (which can use bounds-checking on many C compilers):

// Caution: checks should be made to ensure N*M*sizeof(float) does NOT exceed limitations for auto VLAs and is within available size of stack.// auto VLA is held on the stack, and sized when the function is invoked// no need to free(p) since it will disappear when the function exits, along with the rest of the stack frame

These three approaches are appropriate in different situations and have various trade-offs. For example, static memory allocation has little allocation overhead, automatic allocation may involve slightly more overhead, and dynamic memory allocation can potentially have a great deal of overhead for both allocation and deallocation. The persistent nature of static objects is useful for maintaining state information across function calls, automatic allocation is easy to use but stack space is typically much more limited and transient than either static memory or heap space, and dynamic memory allocation allows convenient allocation of objects whose size is known only at run-time. Most C programs make extensive use of all three.

A number of tools have been developed to help C programmers find and fix statements with undefined behavior or possibly erroneous expressions, with greater rigor than that provided by the compiler. The tool lint was the first such, leading to many others.

the power of assembly language and the convenience of ... assembly language

While C has been popular, influential and hugely successful, it has drawbacks, including: