# Truncated 5-cell

In geometry, a **truncated 5-cell** is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell.

The **truncated 5-cell**, **truncated pentachoron** or **truncated 4-simplex** is bounded by 10 cells: 5 tetrahedra, and 5 truncated tetrahedra. Each vertex is surrounded by 3 truncated tetrahedra and one tetrahedron; the vertex figure is an elongated tetrahedron.

The truncated 5-cell may be constructed from the 5-cell by truncating its vertices at 1/3 of its edge length. This transforms the 5 tetrahedral cells into truncated tetrahedra, and introduces 5 new tetrahedral cells positioned near the original vertices.

The truncated tetrahedra are joined to each other at their hexagonal faces, and to the tetrahedra at their triangular faces.

Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.^{[1]}

The tetrahedron-first parallel projection of the truncated 5-cell into 3-dimensional space has the following structure:

This layout of cells in projection is analogous to the layout of faces in the face-first projection of the truncated tetrahedron into 2-dimensional space. The truncated 5-cell is the 4-dimensional analogue of the truncated tetrahedron.

The Cartesian coordinates for the vertices of an origin-centered truncated 5-cell having edge length 2 are:

More simply, the vertices of the *truncated 5-cell* can be constructed on a hyperplane in 5-space as permutations of (0,0,0,1,2) *or* of (0,1,2,2,2). These coordinates come from positive orthant facets of the truncated pentacross and bitruncated penteract respectively.

The convex hull of the truncated 5-cell and its dual (assuming that they are congruent) is a nonuniform polychoron composed of 60 cells: 10 tetrahedra, 20 octahedra (as triangular antiprisms), 30 tetrahedra (as tetragonal disphenoids), and 40 vertices. Its vertex figure is a hexakis triangular cupola.

The **bitruncated 5-cell** (also called a **bitruncated pentachoron**, **decachoron** and **10-cell**) is a 4-dimensional polytope, or 4-polytope, composed of 10 cells in the shape of truncated tetrahedra.

Topologically, under its highest symmetry, [[3,3,3]], there is only one geometrical form, containing 10 uniform truncated tetrahedra. The hexagons are always regular because of the polychoron's inversion symmetry, of which the regular hexagon is the only such case among ditrigons (an isogonal hexagon with 3-fold symmetry).

Each hexagonal face of the truncated tetrahedra is joined in complementary orientation to the neighboring truncated tetrahedron. Each edge is shared by two hexagons and one triangle. Each vertex is surrounded by 4 truncated tetrahedral cells in a tetragonal disphenoid vertex figure.

The bitruncated 5-cell is one of the two non-regular uniform 4-polytopes which are cell-transitive. The other is the bitruncated 24-cell, which is composed of 48 truncated cubes.

This 4-polytope has a higher extended pentachoric symmetry (2×A_{4}, [[3,3,3]]), doubled to order 240, because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual.

The Cartesian coordinates of an origin-centered bitruncated 5-cell having edge length 2 are:

More simply, the vertices of the bitruncated 5-cell can be constructed on a hyperplane in 5-space as permutations of (0,0,1,2,2). These represent positive orthant facets of the bitruncated pentacross. Another 5-space construction, centered on the origin are all 20 permutations of (-1,-1,0,1,1).

The bitruncated 5-cell can be seen as the intersection of two regular 5-cells in dual positions. = ∩ .

The **disphenoidal 30-cell** is the dual of the bitruncated 5-cell. It is a 4-dimensional polytope (or polychoron) derived from the 5-cell. It is the convex hull of two 5-cells in opposite orientations.

Being the dual of a uniform polychoron, it is cell-transitive, consisting of 30 congruent tetragonal disphenoids. In addition, it is vertex-transitive under the group Aut(A_{4}).

These polytope are from a set of 9 uniform 4-polytope constructed from the [3,3,3] Coxeter group.