Analytic function

Complex analytic functions are exactly equivalent to holomorphic functions, and are thus much more easily characterized.

For the case of an analytic function with several variables (see below), the real analyticity can be characterized using the Fourier–Bros–Iagolnitzer transform.

Also, if all the derivatives of an analytic function at a point are zero, the function is constant on the corresponding connected component.

These statements imply that while analytic functions do have more degrees of freedom than polynomials, they are still quite rigid.

According to Liouville's theorem, any bounded complex analytic function defined on the whole complex plane is constant. The corresponding statement for real analytic functions, with the complex plane replaced by the real line, is clearly false; this is illustrated by

One can define analytic functions in several variables by means of power series in those variables (see power series). Analytic functions of several variables have some of the same properties as analytic functions of one variable. However, especially for complex analytic functions, new and interesting phenomena show up in 2 or more complex dimensions: