Alpha–beta pruning

Search algorithm that seeks to decrease the number of nodes in the minimax algorithm search tree

The algorithm maintains two values, alpha and beta, which respectively represent the minimum score that the maximizing player is assured of and the maximum score that the minimizing player is assured of. Initially, alpha is negative infinity and beta is positive infinity, i.e. both players start with their worst possible score. Whenever the maximum score that the minimizing player (i.e. the "beta" player) is assured of becomes less than the minimum score that the maximizing player (i.e., the "alpha" player) is assured of (i.e. beta < alpha), the maximizing player need not consider further descendants of this node, as they will never be reached in the actual play.

To illustrate this with a real-life example, suppose somebody is playing chess, and it is their turn. Move "A" will improve the player's position. The player continues to look for moves to make sure a better one hasn't been missed. Move "B" is also a good move, but the player then realizes that it will allow the opponent to force checkmate in two moves. Thus, other outcomes from playing move B no longer need to be considered since the opponent can force a win. The maximum score that the opponent could force after move "B" is negative infinity: a loss for the player. This is less than the minimum position that was previously found; move "A" does not result in a forced loss in two moves.

An illustration of alpha–beta pruning. The grayed-out subtrees don't need to be explored (when moves are evaluated from left to right), since it is known that the group of subtrees as a whole yields the value of an equivalent subtree or worse, and as such cannot influence the final result. The max and min levels represent the turn of the player and the adversary, respectively.

Implementations of alpha–beta pruning can often be delineated by whether they are "fail-soft," or "fail-hard". With fail-soft alpha–beta, the alphabeta function may return values (v) that exceed (v < α or v > β) the α and β bounds set by its function call arguments. In comparison, fail-hard alpha–beta limits its function return value into the inclusive range of α and β. The main difference between fail-soft and fail-hard implementations is whether α and β are updated before or after the cutoff check. If they are updated before the check, then they can exceed initial bounds and the algorithm is fail-soft.

Over time, other improvements have been suggested, and indeed the Falphabeta (fail-soft alpha–beta) idea of John Fishburn is nearly universal and is already incorporated above in a slightly modified form. Fishburn also suggested a combination of the killer heuristic and zero-window search under the name Lalphabeta ("last move with minimal window alpha–beta search").