4-тензор

4-тензоры, четырёхте́нзоры — класс математических объектов, используемый для описания некоторых физических полей в релятивистской физике, тензор, определённый на четырёхмерном пространстве-времени[1].

При смене системы отсчёта компоненты этого объекта преобразуются так[2]:

Верхние индексы называются контравариантными, а нижние — ковариантными. Суммарное число индексов задаёт ранг тензора. 4-вектор является 4-тензором первого ранга.

Алгебра внешнего произведения позволяет также вводить для антисимметричных тензоров родственные им дуальные тензоры.

Уравнения теории относительности, электродинамики, и многих современных фундаментальных теорий, включающих их, особенно удобно записывать, используя 4-векторы и 4-тензоры. Главным преимуществом такой записи есть то, что в этой форме уравнения автоматически лоренц-инвариантны, то есть не изменяются при переходе от одной инерциальной системы координат к другой.

Соответствующий 4-тензор существует также и для описания электромагнитного поля. Это 4-тензор второго ранга. При его использовании основные уравнения для электромагнитного поля: уравнение Максвелла и уравнение движения заряженной частицы в поле имеют особенно простую и элегантную форму.

4-тензор определяется через обычные трёхмерные составные векторов напряжённости следующим образом:

Первая форма — это ковариантный тензор, а вторая форма — это контравариантный тензор.

Записанное в 4-векторной форме уравнение движения заряженной частицы в электромагнитном поле приобретает вид