Эрмитов оператор

Самосопряжённый оператор является симметрическим; обратное, вообще говоря, не верно. Для непрерывных операторов, определённых на всём пространстве, понятия симметрический и самосопряжённый совпадают.

1. Спектр (множество собственных чисел) самосопряжённого оператора является вещественным.

2. В унитарных конечномерных пространствах матрица самосопряжённого оператора является эрмитовой. (В частности, в евклидовом пространстве матрица самосопряжённого оператора является симметрической.)

3. У эрмитовой матрицы всегда существует ортонормированный базис из собственных векторов — собственные векторы, соответствующие различным собственным значениям, ортогональны.

Лемма 1. Собственные подпространства самосопряжённого преобразования попарно ортогональны.

Эрмитовы операторы играют важную роль в квантовой механике, где с их помощью представляют наблюдаемые физические величины, см. Принцип неопределённости Гейзенберга.