Электрическое поле

У этого термина существуют и другие значения, см. Электрическое поле (значения).

Электрическое поле (иногда E-field[1]) — это физическое поле, которое окружает каждый электрический заряд и оказывает силовое воздействие на все другие заряды, притягивая или отталкивая их.[2][3] Электрические поля возникают из-за электрических зарядов или из изменяющихся во времени магнитных полей. Электрические и магнитные поля рассматриваются как проявления более общего электромагнитного поля, которое является проявлением одной из четырёх фундаментальных взаимодействий (электромагнитное) природы.

Электрические поля важны во многих областях физики и используются практически в электротехнике. Например, в атомной физике и химии электрическое поле — это сила удерживающая атомное ядро и электроны вместе в атомах. Эта сила отвечает за химические связи между атомами, в результате которых образуются молекулы.

Другие применения электрических полей включают обнаружение движения посредством ёмкостных методов и растущее число диагностических и терапевтических медицинских применений.

Электрическое поле математически определяется как векторное поле, которое связывает с каждой точкой в пространстве силу (электростатическую или кулоновскую) на единицу заряда, приложенную к бесконечно малому положительному пробному заряду, покоящемуся в этой точке.[4][5][6] В системе СИ единица измерения электрического поля: вольт на метр (В / м), в точности эквивалентна ньютону на кулон (N / C).

Электрическое поле определяется в каждой точке пространства как сила (на единицу заряда), которую испытывает исчезающе малый положительный пробный заряд, помещённый в этой точке.[7] Поскольку электрическое поле определяется в терминах силы, а сила является вектором (то есть имеющей величину, и направление), из этого следует, что электрическое поле будет векторным полем . Векторные поля такого вида иногда называют силовыми полями. Электрическое поле действует между двумя зарядами аналогично тому, как гравитационное поле действует между двумя массами расположенными на каком-то расстоянии, поскольку они оба подчиняются закону обратных квадратов.[8] Закон Кулона гласит, что для стационарных зарядов электрическое поле изменяется в зависимости от заряда источника и изменяется обратно пропорционально квадрату расстояния от источника. Это означает, что при удвоении заряда источника, электрическое поле удваивается, а если пробный заряд отодвинуть вдвое дальше от источника, то поле в этой точке будет только четверть его первоначальной силы.

Электрическое поле можно визуализировать с помощью набора линий, направление которых совпадает с направлением поля в этой точке. Эта концепция была введена Майклом Фарадеем[9] чей термин «силовые линии» все ещё используется. Такая интерпретация полезно тем, что напряжённость электрического поля пропорциональна плотности линий.[10] Силовые линии — это пути, по которым следовал бы точечный положительный заряд бесконечно малой массы, когда он вынужден двигаться в области поля, подобно траекториям, по которым пробные массы следуют в гравитационном поле. Силовые линии стационарных зарядов имеют несколько важных свойств: линии поля начинаются от положительных зарядов и заканчиваются отрицательными зарядами, они входят во все хорошие проводники под прямым углом, и они никогда не пересекаются и не замыкаются между собой. Линии поля удобны для схематичного представления; но поле фактически пронизывает все пространство между линиями. Можно нарисовать больше или меньше линий в зависимости от точности, с которой желательно представить поле. Изучение электрических полей, создаваемых стационарными зарядами, называется электростатикой.

Закон Фарадея описывает взаимосвязь между изменяющимися во времени магнитным и электрическим полями. Один из способов сформулировать закон Фарадея состоит в том, что ротор электрического поля равен отрицательной частной производной магнитного поля по времени.[11] В отсутствие изменяющегося во времени магнитного поля, электрическое поле называется потенциальным (то есть безроторным). Это означает, что существует два вида электрических полей: электростатические поля и поля, возникающие из изменяющихся во времени магнитных полей. Статическое электрическое поле рассматривается с помощью электростатики, но при изменяющемся во времени магнитном поле необходимо рассматривать электромагнитное поле. Изучение изменяющихся во времени магнитных и электрических полей называется электродинамикой.

Электрические поля вызываются электрическими зарядами, описываемыми законом Гаусса[12] и изменяющимися во времени магнитными полями, описываемыми законом электромагнитной индукции Фарадея.[13] Этих законов достаточно, для определения поведения электрического поля в вакууме. Однако, поскольку магнитное поле описывается как функция электрического поля, то уравнения для обоих полей связаны и вместе образуют уравнения Максвелла, которые описывают оба поля как функцию зарядов и токов.

Единицы электрического поля в системе СИ — ньютон на кулон (Н / Кл) или вольт на метр (В / м); в основных единицах системы СИ это кг⋅м⋅с−3 ⋅A−1.

Закон индукции Фарадея можно получить, взяв ротор от этого уравнения[17]

Для записи уравнений электромагнетизма лучше использовать непрерывные функций. Однако иногда заряды удобнее описывать как отдельные точки; например, в некоторых моделях можно описывать электроны как точечные источники, где плотность заряда бесконечна на бесконечно малом участке пространства.

Изображение электрического поля, окружающего положительный (красный) и отрицательный (синий) заряды

Электростатические поля — это электрические поля, которые не меняются со временем, что происходит, когда заряды и токи неподвижны. В этом случае закон Кулона полностью описывает электрическое поле.[18]

что предполагает сходство между электрическим полем E и гравитационным полем g или связанными с ними потенциалами. Масса иногда называется «гравитационным зарядом».[19]

И электростатические и гравитационные силы являются центральными, консервативными и подчиняются закону обратных квадратов.

Однородное поле — это поле, в котором электрическое поле постоянно в каждой точке. Это можно приблизительно представить, разместив две проводящие пластины параллельно друг другу и поддерживая между ними напряжение (разность потенциалов), но из-за граничных эффектов (около края плоскостей) электрическое поле искажается. Предполагая бесконечность плоскостей, величина электрического поля E равна:

где Δ V — разность потенциалов между пластинами, а d — расстояние, разделяющее пластины. Отрицательный знак возникает, когда положительные заряды отталкиваются, поэтому на положительный заряд будет действовать сила от положительно заряженной пластины в направлении, противоположном тому, в котором увеличивается напряжение. В микро- и нано-приложениях, например, относящихся к полупроводникам, типичная величина электрического поля составляет порядка 106 V⋅m−1, которое достигается за счет приложения напряжения порядка 1 вольта между проводниками, расположенными на расстоянии 1 мкм друг от друга.

То есть электрические токи (то есть заряды, движущиеся равномерно) и (частная) производная электрического поля по времени вносят непосредственный вклад в создание магнитного полея. Кроме того, уравнение Максвелла — Фарадея утверждает

Они задают два из четырех уравнений Максвелла и тесно связывают электрическое и магнитное поля, в результате чего возникает электромагнитное поле. Уравнения представляют собой набор из четырёх связанных многомерных дифференциальных уравнений в частных производных, решения которых описывают совокупное поведение электромагнитных полей. В общем случае, сила, испытываемая пробным зарядом в электромагнитном поле, определяется силой Лоренца

Полная энергия на единицу объёма, запасенная электромагнитным полем, равняется[20]

Поскольку поля E и B связаны, то было бы ошибочным разделять это выражение на «электрические» и «магнитные» вклады. Однако в стационарном случае поля больше не связаны (см. Уравнения Максвелла). В этом случае имеет смысл вычислить электростатическую энергию в единице объёма

Таким образом, полная энергия U, запасенная в электрическом поле в данном объёме V, равна

В присутствии вещества полезно расширить понятие электрического поля до трех векторных полей:[21]

где P — электрическая поляризация — объемная плотность электрических дипольных моментов, а D — поле электрического индукция. Поскольку E и P определяются отдельно, это уравнение можно использовать для определения D. Физическая интерпретация D не так ясна, как E (фактически поле, приложенное к материалу) или P (индуцированное поле из-за электрических диполей в материале), но все же служит удобным математическим упрощением, поскольку уравнения Максвелла можно упростить в терминах свободных зарядов и токов.

Поля E и D связаны посредством диэлектрической проницаемостью материала ε .[22]

Для линейных, однородных, изотропных материалов E и D пропорциональны и постоянны во всём объёме, без зависимости от координат

Для анизотропных материалов поля E и D не параллельны, и поэтому E и D связаны посредством тензора диэлектрической проницаемости (поле тензора 2-го ранга) в компонентной форме:

Для нелинейных сред E и D непропорциональны. Материалы могут иметь различную степень линейности, однородности и изотропии.

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Расчёты электрического поля можно проводить аналитическими[24][25][26] или численными методами[27]. Аналитические методы удается применить лишь в простейших случаях, на практике в основном используются численные методы. Численные методы включают в себя: метод сеток или метод конечных разностей; вариационные методы; метод конечных элементов; метод интегральных уравнений; метод эквивалентных зарядов[27].

Земля имеет отрицательный заряд около 600000 Кл. В свою очередь, ионосфера Земли имеет положительный заряд. Поэтому, вся атмосфера Земли до высоты примерно в 50 км заполнена электрическим полем, которое можно приближенно считать однородным[28]. Напряженность этого поля составляет от 100 до 300 В/м у поверхности. Мы не чувствуем этой разности потенциалов, поскольку человеческое тело является проводником, поэтому заряд частично переходит с Земли в него. Благодаря этому тело образует вместе с поверхностью Земли единую эквипотенциальные поверхности (то есть разность потенциалов между произвольной точкой на высоте 2 м и поверхностью Земли — около 200 вольт, однако разность потенциалов между головой человека и поверхностью Земли, на которой она стоит — близка к нулю).

Общая разность потенциалов между Землей и ионосферой составляет 400000 вольт[28].

Электрическое поле Земли влияет на движение заряженных частиц в атмосфере. Положительно заряженные частицы движутся в ней вниз, а отрицательно заряженные — вверх. Заряженные частицы постоянно образуются в атмосфере под действием космических лучей, благодаря чему в ней поддерживается постоянный ток с силой 10−12 ампер на каждый квадратный метр[28].