Функтор (математика)

Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов[en].

Впервые функторы начали рассматривать в алгебраической топологии, в которой топологическим пространствам сопоставляются алгебраические объекты (например, фундаментальная группа), а непрерывным отображениям — гомоморфизмы между этими объектами. Впоследствии функторы получили распространение во многих областях математики и используются для того, чтобы связывать между собой различные категории.

Термин «функтор» был позаимствован математиками из работ философа Рудольфа Карнапа[1], при этом у Карнапа слово «функтор» относилось к лингвистическому понятию[2].

Таким образом, функтор должен сохранять тождественные морфизмы и структуру композиции морфизмов.

Бифунктор — это функтор от двух аргументов. Естественный пример — функтор Hom, он ковариантен по одному аргументу и контравариантен по другому.

Для задания функтора нужно определить действие его не только на объектах категории, но и (что более важно) на морфизмах: существуют различные функторы, действующие одинаково на объектах, например, тождественный функтор и антитождественный функтор, обращающий стрелки.

Категория из одного объекта — то же самое, что моноид: морфизмы в ней соответствуют элементам моноида, а операция композиции морфизмов — операции, определённой в моноиде. Функторы между категориями с одним объектом взаимно-однозначно соответствуют гомоморфизмам моноидов; следовательно, в некотором смысле, функтор является обобщением понятия гомоморфизма моноидов на «моноиды, в которых операция композиции определена не всюду».

Функторы довольно часто задают при помощи универсальных свойств, примеры включают в себя тензорные произведения, произведения групп, множеств или векторных пространств, прямые и обратные пределы. Также универсальные конструкции часто задают пару сопряжённых функторов.