Физическая кинетика

Физи́ческая кине́тика (др.-греч. κίνησις — движение) — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей[⇨]. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме[⇨], теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов[⇨].

Если известна функция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае — матрица плотности), то можно вычислить все характеристики неравновесной системы. Вычисление полной функции распределения является практически неразрешимой задачей, но для определения многих свойств физических систем, например, потока энергии или импульса, достаточно знать функцию распределения небольшого числа частиц, а для газов малой плотности — одной частицы.

В кинетике используется существенное различие времён релаксации в неравновесных процессах; например, для газа из частиц или квазичастиц, время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния функцией распределения по всем координатам и импульсам к сокращённому описанию при помощи функции распределения одной частицы по её координатам и импульсам.

Теория явлений переноса в плотных газах и жидкостях значительно сложнее, так как для описания неравновесного состояния уже недостаточно одночастичной функции распределения, а нужно учитывать функции распределения более высокого порядка. Частичные функции распределения удовлетворяют цепочке зацепляющихся уравнений (так называемых уравнений Боголюбова или цепочке ББГКИ, то есть уравнений Боголюбова — Борна — Грина — Кирквуда — Ивона). С помощью этих уравнений можно уточнить кинетическое уравнение для газов средней плотности и исследовать для них явления переноса.

Таким образом, кинетические уравнения и уравнения Максвелла образуют связанную систему уравнений Власова — Максвелла, определяющую все неравновесные явления в плазме. Такой подход называется приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле. При учёте столкновений электронов возникает кинетическое уравнение, в котором эффективное сечение столкновений очень медленно убывает с ростом прицельного расстояния, а также становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмическая расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

Физическая кинетика металлов основана на решении кинетического уравнения для электронов, взаимодействующих с колебаниями кристаллической решётки. Электроны рассеиваются на колебаниях атомов решётки[15], примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса[16]. Электрическое сопротивление возникает в результате этих столкновений. Физическая кинетика объясняет термоэлектрические, гальваномагнически и термомагнинтные явления[17], аномальный скин-эффект[18], циклотронный резонанс в высокочастотных полях и другие кинетические эффекты в металлах. Для сверхпроводников она объясняет особенности их высокочастотного поведения.

Физическая кинетика магнитных явлений основана на решении кинетического уравнения для магнонов. Она позволяет вычислить динамическии восприимчивости магнитных систем в переменных полях, изучить кинетику процессов намагничивания.

Физическая кинетика фазовых переходов первого рода, то есть со скачком энтропии, связана с образованием и ростом зародышей новой фазы. Функция распределения зародышей по их размерам (если зародыши считать макроскопическими образованиями, а процесс роста — медленным) удовлетворяет уравнению Фоккера — Планка[19]:

К задачам физической кинетики относится также вычисление обобщённой восприимчивости, выражающей линейную реакцию физической системы на включение внешнего ноля. Её можно выразить через функции Грина с усреднением по состоянию, которое может быть и неравновесным.

В физической кинетике исследуют также кинетические свойства квантовых систем, что требует применения метода матрицы плотности.