Тормозное излучение

Тормозные излучение электронов высоких энергий, отклоняющихся в электрическом поле атомного ядра

Тормозно́е излуче́ние — электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных поляхускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение». Интересно, что немецкое слово Bremsstrahlung прочно закрепилось в английском языке.

Согласно классической электродинамике, которая достаточно хорошо описывает основные закономерности тормозного излучения, его интенсивность пропорциональна квадрату ускорения заряженной частицы. Так как ускорение обратно пропорционально массе m частицы, то в одном и том же поле тормозное излучение легчайшей заряженной частицы — электрона будет, например, в миллионы раз мощнее излучения протона (I ~ a2 ~ 1/m2). Поэтому чаще всего наблюдается и практически используется тормозное излучение, возникающее при рассеянии электронов на электростатическом поле атомных ядер и электронов; такова, в частности, природа рентгеновских лучей в рентгеновских трубках и гамма-излучения, испускаемого быстрыми электронами при прохождении через вещество.

Причиной значительного тормозного излучения может быть тепловое движение в горячей разреженной плазме[1]. Элементарные акты тормозного излучения, называются в этом случае тепловым, обусловлены столкновениями заряженных частиц, из которых состоит плазма. Мощность тормозного излучения полностью ионизированной плазмы есть[2]:

Например, один литр водородной плазмы с электронной температурой 1⋅108 К и концентрацией электронов 1⋅1016 см-3 будет излучать рентгеновское излучение мощностью около 150 кВт[2]. Космическое рентгеновское излучение, наблюдение которого стало возможным с появлением искусственных спутников Земли, частично является, по-видимому, тепловым тормозным излучением.

Тормозное рентгеновское и гамма-излучение широко применяются в технике, медицине, в исследованиях по биологии, химии и физике.

Вероятно, впервые тормозное излучение наблюдал Никола Тесла в конце 19-го века, однако его результаты не получили широкой огласки[3]. В 1895 году, Вильгельм Рентген показал, что пучок электронов в вакуумной лампе порождает излучения (гамма-лучи) при столкновении с веществом (например, веществом самой лампы)[4]. В 1915 году Уильямом Дуэйном и Франклином Хантом была установлена эмпирическая зависимость максимальной энергии фотонов в зависимости от энергии падающих электронов[5]. В 1922 году Хельмут Куленкампф открыл, что спектр тормозного излучения является сплошным, а также описал его форму[6]. Первая (классическая) теория тормозного излучения была разработана Хендриком Крамерсом вскоре после этого.

Теория тормозного излучения, учитывающая квантовомеханические эффекты, была разработана Зоммерфельдом в 1929 году[6].

В классической электродинамике любой ускоренно движущийся заряд, будет создавать электромагнитные волны. Ускорение, что создаёт ядро с зарядом Ze, частицы с зарядом ze и массой m будет равна Zze2/m. Тогда интенсивность излучения будет пропорциональной Z2z2/m2[5]. Таким образом, с одной стороны, интенсивность излучения пропорциональна квадрату атомного номера элемента, на котором тормозятся частицы. С другой стороны, интенсивность излучения сильно зависит от массы рассеиваемой частицы. Из-за этого, излучение, создаваемое протонами или альфа-частицами имеет интенсивность в миллионы раз меньше, чем для электронов, при рассеянии на той же веществе. Даже самая лёгкая частица, тяжелее электрона, мюон — в 212 раз тяжелее его, и следовательно, порождает в 40000 раз менее интенсивное излучение. Поэтому, на практике, рассматривается только тормозное излучение, создаваемое электронами или позитронами.

В квантовой теории электрон в кулоновском поле имеет некоторую вероятность перейти в состояние с более низкой энергией, испуская при этом фотон (существует вероятность образования нескольких фотонов в этом процессе, однако она крайне мала[7]). Этот процесс, по сути, является неупругим рассеянием электрона на ядре. Возможно и упругое рассеяние, при котором энергия электрона не меняется, и фотон не излучаются, причём большинство актов рассеяния являются именно такими (для низкоэнергетических электронов и лёгких ядер, только 1/137 от всех рассеяний является неупругими[5]).

Эта вероятность, в общем случае, зависит от энергии самого электрона. В нерелятивистском приближении, сечение излучения электрона с энергией k, для электрона, пролетающего на расстоянии r0 от ядра равна[8]:

где Z — заряд ядра, μ — энергия покоя электрона, T0 — кинетическая энергия электрона, p0 и p — импульс электрона до и после столкновения.

Таким образом, в первом приближении можно сказать, что вероятность образования фотона обратно пропорциональна его энергии. С другой стороны, в крайнем случае сверхвысоких энергий, распределение задаётся следующим образом[9]:

Как можно видеть, в обоих случаях существует зависимость вероятности излучения от Z2.

Также, на вид формул, описывающих тормозное излучение влияет искажения кулоновского поля электронными оболочками атома[9].

Для нерелятивистских электронов, фотоны могут испускаться как вперед, так и назад, их угловое распределение пропорционально cos2θ, где θ — угол между направлением вылета фотона и траекторией тормозящегося электрона.

Если электрон тормозится по линейному закону, то его излучение будет полностью поляризовано. Однако, тормозное излучение в веществе создаётся электронами, движущимися по гиперболическим траекториям, поэтому поляризация происходит лишь частично. Чем ближе к ядру пролетает электрон, тем сильнее меняется его траектория, а значит, тем больше компонента ускорения, направленная в противоположную от движения сторону. Таким образом, есть два случая почти полной поляризации тормозного излучения: когда электрон проходит очень близко от ядра, и практически останавливается (в этом случае векторы скорости и тормозящего поля практически параллельны), что соответствует зоне, близкой к коротковолнового лимита фотонов, или когда он проходит относительно далеко от ядра (тогда векторы скорости и поля перпендикулярны, то есть поляризация является отрицательной), что соответствует наименее энергетическим фотонам[12]. В промежуточных случаях поляризация меньше.

Спектр тормозного излучения непрерывный, а его максимальная частота определяется энергией заряженной частицы. Если электрон ускорить в потенциале в десятки киловольт, то при торможении такого электрона возникнут электромагнитные волны в рентгеновском диапазоне.

Форма спектра является сложной, но общие принципы следующие: доля фотонов заданной частоты уменьшается с ростом частоты, и стремится к нулю при приближении к максимальному её значению. Для более высокоэнергетических электронов, судьба фотонов, энергия которых близка к максимально возможной, растёт[13].

Хорошим приближением спектра тормозного излучения является формула Крамерса[en] [14]:

где λ0 — минимальная длина волны излучения, а K — некоторый коэффициент, зависящий от материала мишени.

На практике, спектр фотонов подавляется в низкочастотной области, потому что поглощение низкоэнергетических фотонов в веществе значительно сильнее, чем высокоэнергетических[15].

При пролёте через слой вещества толщиной dx, состоящий из атомов с зарядом Ze и массовым числом А, электрон излучает некоторую долю своей энергии E e, что выражается следующей эмпирической формулой[16]:

Из формулы видно, что энергия электронов и интенсивность тормозного излучения спадают экспоненциально при углублении в мишень. Толщина слоя вещества, при пролёте через которую энергия электрона уменьшается в e раз называется радиационной длиной. Эта величина часто используется для измерения толщины мишеней.

Поскольку гамма-излучения также поглощается в веществе, для максимизации интенсивности излучения, толщина мишени должна быть не очень большой. Обычно, излучение достигает максимума при толщине слоя вещества в 1/3 — 1/4 от максимального пробега.

В рентгеновских трубках электроны разгоняются электрическим полем, после чего ударяются в специальную металлическую мишень. Во время столкновений с атомами мишени, электроны тормозятся, и излучают фотоны, в том числе и в рентгеновском диапазоне. Не всё излучения рентгеновских трубок является тормозным — большая его часть приходится на характеристическое рентгеновское излучение — передачи энергии электрона, что переводит его на более высокую орбиталь, и дальнейшее его возвращения на нижней энергетический уровень с излучением полученной энергии.

Благодаря своей простоте и доступности, эта схема очень часто применяется для искусственного получения рентгеновских лучей, и используется в медицине и технике, несмотря на то, что её КПД достаточно низкий — всего 3-8 % энергии превращается в рентгеновское излучение[17].

Одним из продуктов бета-распада является бета-частица — высокоэнергетический электрон. При прохождении бета-частиц через вещество они теряют энергию через тормозное излучение, и этот канал является тем больше, чем больше энергия частицы. Кроме обычного тормозного излучения, образующегося при движении электрона в веществе (внешнее тормозное излучение), существует другой подвид излучения, характерное для бета-распада — внутреннее тормозное излучение, состоящее из гамма-квантов, которые образуются непосредственно при бета-распаде[18]. Поскольку энергия бета-частиц ограничена, заметным тормозное излучение становится лишь для очень интенсивных источников бета-излучения.

Тормозное излучение следует учитывать при разработке защиты от бета-радиации, ведь гамма-лучи имеют значительно большую проникающую способность чем бета-частицы, для защиты от которых достаточно металлического экрана толщиной в несколько миллиметров. Для защиты от высокоэнергетических бета-частиц следует использовать экраны из пластика или других материалов, состоящих из элементов с низким атомным номером, для уменьшения вероятности излучения высокоэнергетических фотонов[19].

В плазме атомы являются ионизированными, а следовательно присутствует большое количество свободных носителей заряда. Тормозное излучение в таком случае возникает при столкновении электронов и ионов. С увеличением температуры, скорости электронов и, соответственно, энергии фотонов растут.

Если плазма является прозрачной для излучения, то тормозное излучение является эффективным способом её охлаждения. Такой канал является основным для температур, превышающих 10 000 000 кельвинов[20].

Именно такое излучение является основной причиной радиоизлучения солнечной короны, планетарных туманностей и межзвездного газа[21].

Электрон может рассеиваться и на электронных оболочках атомов. Это излучение значительно меньше, из-за того, что генерируется при рассеянии на ядрах, поскольку заряд электрона составляет лишь e, тогда как энергия тормозного излучения пропорциональна квадрату заряда частицы-мишени. При энергиях падающих электронов меньших 300 кэВ этим каналом можно пренебречь[22]. Однако с ростом скорости электронов, а также для легких элементов (заряд ядра которых не такой большой, по сравнению с зарядом электрона), например при прохождении через воздух, его значимость возрастает. Электрон-электронное тормозное излучение является значительным в некоторых астрофизических процессах, в облаках плазмы с температурой большей 109 К[21].

Как было сказано выше, интенсивность тормозного излучения, создаваемого протонами в кулоновском поле, в несколько миллионов раз меньше излучения, создаваемого электронами, потому, что оно обратно пропорциональна квадрату массы. Однако, нуклон-нуклонные силы значительно больше электромагнитные, а потому тормозное излучение нуклонами было зафиксировано в ядерных реакциях, таких как

Фотоны, излучаемые в таких реакциях имеют энергию в несколько МэВ[23].