Система Цермело — Френкеля

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 2 июня 2021; проверки требуют .

Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году.

К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC, англ. Zermelo—Fraenkel set theory with the axiom of Choice).

Эта система аксиом записана на языке логики первого порядка. Существуют и другие системы; например, система аксиом фон Неймана — Бернайса — Гёделя (NBG) наряду с множествами рассматривает так называемые классы объектов, при этом она равносильна ZF в том смысле, что любая теорема о множествах (то есть не упоминающая о классах), доказуемая в одной системе, также доказуема и в другой.

Аксиомами ZFC называется следующая последовательность высказываний теории множеств:

Перечисление дано по книге Френкель А. А., Бар-Хиллел И. «Основания теории множеств».

В обсуждаемой статье приведены 10 высказываний (включая аксиому пустого множества), которые можно сгруппировать следующим образом.

2) группу высказываний об образовании множеств из уже имеющихся множеств (аксиомы 2, 3, 4 и схемы 5, 7), в которой можно выделить три подгруппы,

3) группу высказываний об упорядоченности образованных множеств (аксиомы 8, 9).

Следующее высказывание выражает достаточное условие идентичности двух множеств.

«Аксиому объёмности» можно сформулировать следующим образом: «Если каждый элемент первого множества принадлежит второму множеству, а каждый элемент второго множества принадлежит первому множеству, тогда оба множества идентичны.»

Соединение указанного необходимого условия [идентичности множеств] с аксиомой объёмности даёт следующий критерий равенства множеств:

«Аксиома объёмности» была бы бесполезным высказыванием, если бы не существовало ни одного множества или существовало только одно множество.

Следующие два высказывания гарантируют существование по меньшей мере двух разных множеств, а именно: а) множества, в котором нет ничего, и б) множества, содержащего бесконечное количество элементов.

«Аксиому [существования] пустого множества» можно сформулировать следующим образом: «Существует [по меньшей мере одно] множество без единого элемента.»

2.0) группу постулатов об образовании множеств путём перечисления их элементов,

2.1) группу деклараций об учреждении и об упразднении семейств множеств,

2.2) группу схем образования множеств с помощью математически корректных суждений.

2.0. Постулат об образовании множеств путём перечисления их элементов: Аксиома пары

Следующие две аксиомы, именуемые «аксиомой множества подмножеств» и «аксиомой объединения», можно рассматривать как естественное дополнение к «аксиоме пары». Чтобы убедиться в этом, заметим следующее.

2.2. Схемы образования множеств с помощью математически корректных суждений

«Схема выделения» и «схема преобразования» выражают следующую простую мысль: «Каждое математически корректное суждение об элементах любого множества приводит к образованию [того же самого или другого] множества.»

Математически корректные суждения, фигурирующие в «схеме выделения», позволяют «довести [до товарного вида]» множества, которые образованы, например, с помощью аксиомы булеана.

Математически корректные суждения, фигурирующие в «схеме преобразования», позволяют создавать «[математические] изделия» из [«неотёсанных»] множеств, образованных, например, с помощью аксиомы булеана.

Предположим, что семейство образовано из множества неотрицательных чётных чисел и множества неотрицательных нечётных чисел. В таком случае, выполнены все условия «аксиомы выбора», а именно:

1. Если ZFC непротиворечива, то её непротиворечивость не может быть доказана средствами ZFC, согласно второй теореме Гёделя.

По-видимому, первоначальный вариант теории множеств, умышленно названный немецким математиком Георгом Кантором учением о множествах, состоял из двух аксиом, а именно:

«Аксиома математической свободы» имеет рациональные следствия, включая следующие:

В 1903 году английский философ Бертран Рассел обратил внимание на следующее:

1) руководствуясь «аксиомой математической свободы», невозможно отличить «свободу» от «вседозволенности»,

Эти критические высказывания о «немецком учении [о множествах]» побудили немецкого математика Эрнста Цермело заменить «аксиому математической свободы» такими её следствиями, которые не вызывали бы протеста у математиков.

В 1908 году в журнале Mathematische Annalen Эрнст Цермело опубликовал следующие семь аксиом:

Так «учение о множествах» превратилось в теорию множеств, а именно в теорию ZC [Zermelo set theory with the Axiom of Choice].

Предпоследняя аксиома теории ZC (аксиома выбора) стала предметом оживлённых математических дискуссий. Действительно, эта аксиома не является следствием «аксиомы математической свободы».

В 1922 году немецкий математик Абрахам Френкель и норвежский математик Туральф Скулем дополнили теорию ZC схемой преобразования. В результате теория ZC превратилась в теорию ZFC [Zermelo-Fraenkel set theory with the Axiom of Choice].