Теорема о движении центра масс системы

Теоре́ма о движе́нии це́нтра масс (це́нтра ине́рции) системы — одна из теорем динамики, следствие законов Ньютона. Утверждает, что ускорение центра масс системы не зависит от внутренних сил взаимодействия между телами системы, и связывает это ускорение с внешними силами, действующими на систему[1][2].

Системой, о которой идёт речь в теореме, может являться любая механическая система, например, совокупность материальных точек, протяжённое тело или совокупность протяжённых тел.

Нередко при рассмотрении движения системы полезно знать закон движения её центра масс. В общем случае этот закон, составляющий содержание теоремы о движении центра масс, формулируется следующим образом[1]:

Произведение массы системы на ускорение её центра масс равно геометрической сумме всех действующих на систему внешних сил.

Для последующего рассмотрения разделим все силы, действующие на тела системы, на два типа:

Используя введённые обозначения, второй закон Ньютона для каждой из рассматриваемых материальных точек можно записать в виде

Таким образом, движение центра масс определяется только внешними силами, а внутренние силы никакого влияния на это движение оказать не могут. Последняя формула и является математическим выражением теоремы о движении центра масс системы.

Центр масс движется так, как двигалась бы материальная точка, масса которой равна массе системы, под действием силы, равной сумме всех внешних сил, действующих на систему.

В отсутствие внешних сил, а также при равенстве суммы всех внешних сил нулю, ускорение центра масс равно нулю, и, значит, его скорость постоянна. Таким образом, справедливо утверждение, составляющее содержание закона сохранения движения центра масс:

Если сумма внешних сил, действующих на систему, равна нулю, то центр масс такой системы движется с постоянной скоростью, т. е. равномерно и прямолинейно.

В частности, если первоначально центр масс покоился, то в указанных условиях он будет покоиться и в дальнейшем.

Из закона сохранения движения центра масс следует, что система отсчёта, связанная с центром масс замкнутой системы, является инерциальной. Использование таких систем отсчёта при изучении механических свойств замкнутых систем предпочтительно, поскольку таким образом исключается из рассмотрения равномерное и прямолинейное движение системы как целого.

Возможны случаи, когда сумма внешних сил нулю не равна, но равна нулю её проекция на какое-либо направление. В этом случае проекция ускорения центра масс на это направление также равна нулю и, соответственно, скорость центра масс вдоль этого направления не изменяется.

Практическая ценность теоремы состоит в том, что при решении задачи об определении характера движения центра масс она позволяет полностью исключить из рассмотрения все внутренние силы.

Закон сохранения движения центра масс сформулировал Исаак Ньютон в своём знаменитом труде «Математические начала натуральной философии», изданном в 1687 году. И. Ньютон писал: «Центр тяжести системы двух или нескольких тел от взаимодействия тел друг на друга не изменяет ни своего состояния покоя, ни движения; поэтому центр тяжести системы всех действующих друг на друга тел (при отсутствии внешних действий и препятствий) или находится в покое, или движется равномерно и прямолинейно»[4]. Далее он делал вывод: «Таким образом, поступательное количество движения отдельного ли тела или системы тел, надо всегда рассчитывать по движению центра тяжести их»[4].