Теорема о движении центра масс системы

Системой, о которой идёт речь в теореме, может являться любая механическая система, например, совокупность материальных точек, протяжённое тело или совокупность протяжённых тел.

Произведение массы системы на ускорение её центра масс равно геометрической сумме всех действующих на систему внешних сил.

Для последующего рассмотрения разделим все силы, действующие на тела системы, на два типа:

Используя введённые обозначения, второй закон Ньютона для каждой из рассматриваемых материальных точек можно записать в виде

Таким образом, движение центра масс определяется только внешними силами, а внутренние силы никакого влияния на это движение оказать не могут. Последняя формула и является математическим выражением теоремы о движении центра масс системы.

Центр масс движется так, как двигалась бы материальная точка, масса которой равна массе системы, под действием силы, равной сумме всех внешних сил, действующих на систему.

В отсутствие внешних сил, а также при равенстве суммы всех внешних сил нулю, ускорение центра масс равно нулю, и, значит, его скорость постоянна. Таким образом, справедливо утверждение, составляющее содержание закона сохранения движения центра масс:

Если сумма внешних сил, действующих на систему, равна нулю, то центр масс такой системы движется с постоянной скоростью, т. е. равномерно и прямолинейно.

В частности, если первоначально центр масс покоился, то в указанных условиях он будет покоиться и в дальнейшем.

Из закона сохранения движения центра масс следует, что система отсчёта, связанная с центром масс замкнутой системы, является инерциальной. Использование таких систем отсчёта при изучении механических свойств замкнутых систем предпочтительно, поскольку таким образом исключается из рассмотрения равномерное и прямолинейное движение системы как целого.

Возможны случаи, когда сумма внешних сил нулю не равна, но равна нулю её проекция на какое-либо направление. В этом случае проекция ускорения центра масс на это направление также равна нулю и, соответственно, скорость центра масс вдоль этого направления не изменяется.

Практическая ценность теоремы состоит в том, что при решении задачи об определении характера движения центра масс она позволяет полностью исключить из рассмотрения все внутренние силы.