Теорема Карно (термодинамика)

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 13 мая 2020; проверки требует .

Теорема Карно — теорема о коэффициенте полезного действия (КПД) тепловых двигателей. Согласно этой теореме, КПД цикла Карно не зависит от природы рабочего тела и конструкции теплового двигателя и является функцией температур нагревателя и холодильника[1].

В 1824 году Сади Карно пришел к выводу: «Движущая сила тепла не зависит от агентов, взятых для её развития; её количество исключительно определяется температурами тел, между которыми, в конечном счете, производится перенос теплорода»

Логика рассуждений Карно была такова: «…можно с достаточным основанием сравнить движущую силу тепла с силой падающей воды: обе имеют максимум, который нельзя превзойти, какая бы ни была бы в одном случае машина для использования действия воды, и в другом — вещество, употребленное для развития силы тепла

Движущая сила падающей воды зависит от высоты падения и количества воды; движущая сила тепла также зависит от количества употребленного теплорода и зависит от того, что можно назвать и что мы на самом деле и будем называть высотой его падения, — то есть от разности температур тел, между которыми происходит обмен теплорода. При падении воды движущая сила строго пропорциональна разности уровней в верхнем и нижнем резервуаре. При падении теплорода движущая сила без сомнения возрастает с разностью температур между горячим и холодным телами….

Некоторые современные авторы (К. В. Глаголев , А. Н. Морозов из МГТУ им. Н. Э. Баумана) говорят уже о двух теоремах Карно, цитата: «Приведенные выше рассуждения позволяют перейти к формулировке первой и второй теорем Карно. Их можно сформулировать в виде двух следующих утверждений:

Другие авторы (например, Б. М. Яворский и Ю. А. Селезнев) указывают на три аспекта одной теоремы Карно, цитата (см. стр. 151—152.):

…В различных положениях поршень испытывает давления более или менее значительные со стороны воздуха, находящегося в цилиндре; упругая сила воздуха меняется как от изменения объёма, так и от изменения температуры, но необходимо заметить, что Воздух послужит нам тепловой машиной; мы употребили его даже наиболее выгодным образом, так как не происходило ни одного бесполезного восстановления равновесия теплорода.

при равных объёмах, то есть для подобных положений поршня, при разрежении температура будет более высокой, чем при сжатии. Поэтому в первом случае упругая сила воздуха будет больше, а отсюда движущая сила, произведенная движением от расширения, будет больше, чем сила, нужная для сжатия. Таким образом, получится излишек движущей силы, излишек, который можно на что-нибудь употребить.

Одно из доказательств представлено в книге Д. тер Хаара и Г. Вергеланда «Элементарная термодинамика» (см. рис).

Подобным же образом, работа, совершенная при изотермическом сжатии, превращается в тепло, которое передается холодному резервуару:

В то же время мы приходим к результату… что КПД оптимального цикла равен